Development and experimental study on testing platform for rock-soil thermal response tester
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2015.10.057
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Raymond, J. & Therrien, R. & Gosselin, L. & Lefebvre, R., 2011. "Numerical analysis of thermal response tests with a groundwater flow and heat transfer model," Renewable Energy, Elsevier, vol. 36(1), pages 315-324.
- Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
- Gehlin, S.E.A. & Hellström, G., 2003. "Influence on thermal response test by groundwater flow in vertical fractures in hard rock," Renewable Energy, Elsevier, vol. 28(14), pages 2221-2238.
- Sharqawy, Mostafa H. & Said, S.A. & Mokheimer, E.M. & Habib, M.A. & Badr, H.M. & Al-Shayea, N.A., 2009. "First in situ determination of the ground thermal conductivity for boreholeheat exchanger applications in Saudi Arabia," Renewable Energy, Elsevier, vol. 34(10), pages 2218-2223.
- Zhang, Changxing & Guo, Zhanjun & Liu, Yufeng & Cong, Xiaochun & Peng, Donggen, 2014. "A review on thermal response test of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 851-867.
- Chen, Chao & Sun, Feng-ling & Feng, Lei & Liu, Ming, 2005. "Underground water-source loop heat-pump air-conditioning system applied in a residential building in Beijing," Applied Energy, Elsevier, vol. 82(4), pages 331-344, December.
- Liebel, Heiko T. & Javed, Saqib & Vistnes, Gunnar, 2012. "Multi-injection rate thermal response test with forced convection in a groundwater-filled borehole in hard rock," Renewable Energy, Elsevier, vol. 48(C), pages 263-268.
- Gustafsson, A.-M. & Westerlund, L., 2011. "Heat extraction thermal response test in groundwater-filled borehole heat exchanger – Investigation of the borehole thermal resistance," Renewable Energy, Elsevier, vol. 36(9), pages 2388-2394.
- Yao, Runming & Li, Baizhan & Steemers, Koen, 2005. "Energy policy and standard for built environment in China," Renewable Energy, Elsevier, vol. 30(13), pages 1973-1988.
- Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng & Du, Yaxing, 2014. "A p(t)-linear average method to estimate the thermal parameters of the borehole heat exchangers for in situ thermal response test," Applied Energy, Elsevier, vol. 131(C), pages 211-221.
- Choi, Wonjun & Ooka, Ryozo, 2015. "Interpretation of disturbed data in thermal response tests using the infinite line source model and numerical parameter estimation method," Applied Energy, Elsevier, vol. 148(C), pages 476-488.
- Gustafsson, A.-M. & Westerlund, L., 2010. "Multi-injection rate thermal response test in groundwater filled borehole heat exchanger," Renewable Energy, Elsevier, vol. 35(5), pages 1061-1070.
- Gehlin, S.E.A. & Hellström, G. & Nordell, B., 2003. "The influence of the thermosiphon effect on the thermal response test," Renewable Energy, Elsevier, vol. 28(14), pages 2239-2254.
- Beier, Richard A., 2011. "Vertical temperature profile in ground heat exchanger during in-situ test," Renewable Energy, Elsevier, vol. 36(5), pages 1578-1587.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Spitler, Jeffrey D. & Gehlin, Signhild E.A., 2015. "Thermal response testing for ground source heat pump systems—An historical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1125-1137.
- Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of disturbance on thermal response test, part 1: Development of disturbance analytical model, parametric study, and sensitivity analysis," Renewable Energy, Elsevier, vol. 85(C), pages 306-318.
- Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of natural convection on thermal response test conducted in saturated porous formation: Comparison of gravel-backfilled and cement-grouted borehole heat exchangers," Renewable Energy, Elsevier, vol. 96(PA), pages 891-903.
- Zhang, Changxing & Guo, Zhanjun & Liu, Yufeng & Cong, Xiaochun & Peng, Donggen, 2014. "A review on thermal response test of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 851-867.
- Spitler, Jeffrey D. & Javed, Saqib & Ramstad, Randi Kalskin, 2016. "Natural convection in groundwater-filled boreholes used as ground heat exchangers," Applied Energy, Elsevier, vol. 164(C), pages 352-365.
- Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
- Pasquier, Philippe, 2018. "Interpretation of the first hours of a thermal response test using the time derivative of the temperature," Applied Energy, Elsevier, vol. 213(C), pages 56-75.
- Hakala, Petri & Vallin, Sami & Arola, Teppo & Martinkauppi, Ilkka, 2022. "Novel use of the enhanced thermal response test in crystalline bedrock," Renewable Energy, Elsevier, vol. 182(C), pages 467-482.
- Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
- Maria Isabel Vélez Márquez & Jasmin Raymond & Daniela Blessent & Mikael Philippe & Nataline Simon & Olivier Bour & Louis Lamarche, 2018. "Distributed Thermal Response Tests Using a Heating Cable and Fiber Optic Temperature Sensing," Energies, MDPI, vol. 11(11), pages 1-24, November.
- Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
- Zhang, Changxing & Wang, Xinjie & Sun, Pengkun & Kong, Xiangqiang & Sun, Shicai, 2020. "Effect of depth and fluid flow rate on estimate for borehole thermal resistance of single U-pipe borehole heat exchanger," Renewable Energy, Elsevier, vol. 147(P1), pages 2399-2408.
- Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
- Choi, Wonjun & Kikumoto, Hideki & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference for thermal response test parameter estimation and uncertainty assessment," Applied Energy, Elsevier, vol. 209(C), pages 306-321.
- Nian, Yong-Le & Wang, Xiang-Yang & Xie, Kun & Cheng, Wen-Long, 2020. "Estimation of ground thermal properties for coaxial BHE through distributed thermal response test," Renewable Energy, Elsevier, vol. 152(C), pages 1209-1219.
- Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of disturbance on thermal response test, part 2: Numerical study of applicability and limitation of infinite line source model for interpretation under disturbance from outdoor environment," Renewable Energy, Elsevier, vol. 85(C), pages 1090-1105.
- Aneta Sapińska-Śliwa & Tomasz Sliwa & Kazimierz Twardowski & Krzysztof Szymski & Andrzej Gonet & Paweł Żuk, 2020. "Method of Averaging the Effective Thermal Conductivity Based on Thermal Response Tests of Borehole Heat Exchangers," Energies, MDPI, vol. 13(14), pages 1-20, July.
- Javed, Saqib & Spitler, Jeffrey, 2017. "Accuracy of borehole thermal resistance calculation methods for grouted single U-tube ground heat exchangers," Applied Energy, Elsevier, vol. 187(C), pages 790-806.
- Wagner, Valentin & Bayer, Peter & Kübert, Markus & Blum, Philipp, 2012. "Numerical sensitivity study of thermal response tests," Renewable Energy, Elsevier, vol. 41(C), pages 245-253.
- Zhao, Zilong & Lin, Yu-Feng & Stumpf, Andrew & Wang, Xinlei, 2022. "Assessing impacts of groundwater on geothermal heat exchangers: A review of methodology and modeling," Renewable Energy, Elsevier, vol. 190(C), pages 121-147.
More about this item
Keywords
Ground source heat pump; Rock-soil thermal conductivity; Thermal response tester; Testing platform;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:765-771. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.