IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v121y2017icp513-523.html
   My bibliography  Save this article

Dynamic behavior and transfer function of collector field in once-through DSG solar trough power plants

Author

Listed:
  • Guo, Su
  • Liu, Deyou
  • Chu, Yinghao
  • Chen, Xingying
  • Xu, Chang
  • Liu, Qunming
  • Guo, Tiezheng

Abstract

Dynamic modeling and analysis for once-through direct steam generation (DSG) solar trough are difficult because of the phase changes of the fluid and the discontinuity of fluid properties. This work develops a Collector Field Dynamic Model (CFDM) for the collector field of once-through DSG solar trough. Dynamic behaviors of fluid parameters are analyzed when there are disturbances in either full or partial small Direct Irradiance (DNI), inlet mass flow rate, and spray water flow rate. Transfer functions of outlet fluid temperature and mass flow rate are derived using the CFDM. Key results are concluded: (1) DNI disturbances closer to the subcooled water region have the largest impact on fluid parameters. (2) In initial period, the outlet temperature and mass flow rate are mainly influenced by the DNI disturbance closer to the field outlet and on the mid-section of the collector loop, respectively. (3) When the field inlet mass flow rate increases slightly, the outlet fluid temperature and mass flow rate will change significantly and take a long time to achieve new balances. (4) The outlet fluid temperature and mass flow rate change quickly and noticeably with the change in spray flow rate, and converge rapidly to new balance levels.

Suggested Citation

  • Guo, Su & Liu, Deyou & Chu, Yinghao & Chen, Xingying & Xu, Chang & Liu, Qunming & Guo, Tiezheng, 2017. "Dynamic behavior and transfer function of collector field in once-through DSG solar trough power plants," Energy, Elsevier, vol. 121(C), pages 513-523.
  • Handle: RePEc:eee:energy:v:121:y:2017:i:c:p:513-523
    DOI: 10.1016/j.energy.2017.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217300026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Rong & Wiesner, Theodore F., 2015. "Closed-form modeling of direct steam generation in a parabolic trough solar receiver," Energy, Elsevier, vol. 79(C), pages 163-176.
    2. Li, Mengying & Chu, Yinghao & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2016. "Quantitative evaluation of the impact of cloud transmittance and cloud velocity on the accuracy of short-term DNI forecasts," Renewable Energy, Elsevier, vol. 86(C), pages 1362-1371.
    3. Zarza, Eduardo & Valenzuela, Loreto & León, Javier & Hennecke, Klaus & Eck, Markus & Weyers, H.-Dieter & Eickhoff, Martin, 2004. "Direct steam generation in parabolic troughs: Final results and conclusions of the DISS project," Energy, Elsevier, vol. 29(5), pages 635-644.
    4. Cabello, J.M. & Cejudo, J.M. & Luque, M. & Ruiz, F. & Deb, K. & Tewari, R., 2011. "Optimization of the size of a solar thermal electricity plant by means of genetic algorithms," Renewable Energy, Elsevier, vol. 36(11), pages 3146-3153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Montanet, Edouard & Rodat, Sylvain & Falcoz, Quentin & Roget, Fabien, 2023. "Influence of topography on the optical performances of a Fresnel linear asymmetrical concentrator array: The case of the eLLO solar power plant," Energy, Elsevier, vol. 274(C).
    2. Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Zheng, Wandong & Xia, Junbao, 2018. "Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector," Energy, Elsevier, vol. 142(C), pages 920-931.
    3. Ding, Xingqi & Duan, Liqiang & Li, Da & Ji, Shuaiyu & Yang, Libo & Zheng, Nan & Zhou, Yufei, 2024. "Dynamic characteristics of a novel liquid air energy storage system coupled with solar heat and waste heat recovery," Renewable Energy, Elsevier, vol. 221(C).
    4. Guo, Su & Liu, Deyou & Chen, Xingying & Chu, Yinghao & Xu, Chang & Liu, Qunming & Zhou, Ling, 2017. "Model and control scheme for recirculation mode direct steam generation parabolic trough solar power plants," Applied Energy, Elsevier, vol. 202(C), pages 700-714.
    5. Sandá, Antonio & Moya, Sara L. & Valenzuela, Loreto, 2019. "Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biencinto, Mario & González, Lourdes & Valenzuela, Loreto, 2016. "A quasi-dynamic simulation model for direct steam generation in parabolic troughs using TRNSYS," Applied Energy, Elsevier, vol. 161(C), pages 133-142.
    2. Pal, Ram Kumar & K., Ravi Kumar, 2021. "Two-fluid modeling of direct steam generation in the receiver of parabolic trough solar collector with non-uniform heat flux," Energy, Elsevier, vol. 226(C).
    3. de Sá, Alexandre Bittencourt & Pigozzo Filho, Victor César & Tadrist, Lounès & Passos, Júlio César, 2018. "Direct steam generation in linear solar concentration: Experimental and modeling investigation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 910-936.
    4. Guo, Su & Liu, Deyou & Chen, Xingying & Chu, Yinghao & Xu, Chang & Liu, Qunming & Zhou, Ling, 2017. "Model and control scheme for recirculation mode direct steam generation parabolic trough solar power plants," Applied Energy, Elsevier, vol. 202(C), pages 700-714.
    5. Fuqiang, Wang & Ziming, Cheng & Jianyu, Tan & Yuan, Yuan & Yong, Shuai & Linhua, Liu, 2017. "Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1314-1328.
    6. Sandá, Antonio & Moya, Sara L. & Valenzuela, Loreto, 2019. "Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Burin, Eduardo Konrad & Vogel, Tobias & Multhaupt, Sven & Thelen, Andre & Oeljeklaus, Gerd & Görner, Klaus & Bazzo, Edson, 2016. "Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant," Energy, Elsevier, vol. 117(P2), pages 416-428.
    8. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.
    9. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    10. Zhang, Peiye & Liu, Ming & Mu, Ruiqi & Yan, Junjie, 2024. "Exergy-based control strategy design and dynamic performance enhancement for parabolic trough solar receiver-reactor of methanol decomposition reaction," Renewable Energy, Elsevier, vol. 224(C).
    11. Chen, Shanlin & Li, Mengying, 2022. "Improved turbidity estimation from local meteorological data for solar resourcing and forecasting applications," Renewable Energy, Elsevier, vol. 189(C), pages 259-272.
    12. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Lecat, F. & Flamant, G., 2017. "A thermal model to predict the dynamic performances of parabolic trough lines," Energy, Elsevier, vol. 141(C), pages 1187-1203.
    13. Corral, Nicolás & Anrique, Nicolás & Fernandes, Dalila & Parrado, Cristóbal & Cáceres, Gustavo, 2012. "Power, placement and LEC evaluation to install CSP plants in northern Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6678-6685.
    14. Glasnovic, Zvonimir & Margeta, Karmen & Premec, Krunoslav, 2016. "Could Key Engine, as a new open-source for RES technology development, start the third industrial revolution?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1194-1209.
    15. Hongn, Marcos & Flores Larsen, Silvana, 2018. "Hydrothermal model for small-scale linear Fresnel absorbers with non-uniform stepwise solar distribution," Applied Energy, Elsevier, vol. 223(C), pages 329-346.
    16. Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
    17. Peterseim, Juergen H. & White, Stuart & Tadros, Amir & Hellwig, Udo, 2013. "Concentrated solar power hybrid plants, which technologies are best suited for hybridisation?," Renewable Energy, Elsevier, vol. 57(C), pages 520-532.
    18. Yan, Hui & Liu, Ming & Wang, Zhu & Zhang, Kezhen & Chong, Daotong & Yan, Junjie, 2023. "Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions," Energy, Elsevier, vol. 262(PA).
    19. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2022. "A network of sky imagers for spatial solar irradiance assessment," Renewable Energy, Elsevier, vol. 187(C), pages 1009-1019.
    20. Monaem Elmnifi & Moneer Amhamed & Naji Abdelwanis & Otman Imrayed, 2018. "Solar Supported Steam Production For Power Generation In Libya," Acta Mechanica Malaysia (AMM), Zibeline International Publishing, vol. 1(2), pages 5-9, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:121:y:2017:i:c:p:513-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.