IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp1086-1094.html
   My bibliography  Save this article

Thermoeconomic analysis of an ocean thermal energy conversion plant

Author

Listed:
  • Jung, Jung-Yeul
  • Lee, Ho Saeng
  • Kim, Hyeon-Ju
  • Yoo, Yungpil
  • Choi, Woo-Young
  • Kwak, Ho-Young

Abstract

A thermoeconomic analysis of an ocean thermal energy conversion (OTEC) system was performed using the modified productive structure analysis (MOPSA) method. In this analysis, the unit cost of electricity from the 20-kW OTEC pilot plant built and operated at the Korea Research Institute of Ships and Ocean Engineering was estimated. The unit cost of electricity from the OTEC plant with thermal efficiency of 0.66% is approximately $0.363/kWh. The unit cost of electricity of the OTEC plant increases linearly with the unit cost of supplied heat to the evaporator and increases inversely to the exergy efficiency of the system independently. The OTEC system was found to be economically viable renewable energy source in the regions where the temperature of warm sea water remains to be 25 °C and the condenser effluent from a power plant is available.

Suggested Citation

  • Jung, Jung-Yeul & Lee, Ho Saeng & Kim, Hyeon-Ju & Yoo, Yungpil & Choi, Woo-Young & Kwak, Ho-Young, 2016. "Thermoeconomic analysis of an ocean thermal energy conversion plant," Renewable Energy, Elsevier, vol. 86(C), pages 1086-1094.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:1086-1094
    DOI: 10.1016/j.renene.2015.09.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115303104
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.09.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oh, Si-Doek & Lee, Yeji & Yoo, Yungpil & Kim, Jinoh & Kim, Suyong & Song, Seung Jin & Kwak, Ho-Young, 2013. "A support strategy for the promotion of photovoltaic uses for residential houses in Korea," Energy Policy, Elsevier, vol. 53(C), pages 248-256.
    2. Yang, Min-Hsiung & Yeh, Rong-Hua, 2014. "Analysis of optimization in an OTEC plant using organic Rankine cycle," Renewable Energy, Elsevier, vol. 68(C), pages 25-34.
    3. Oh, Si-Doek & Kim, Ki-Young & Oh, Shuk-Bum & Kwak, Ho-Young, 2012. "Optimal operation of a 1-kW PEMFC-based CHP system for residential applications," Applied Energy, Elsevier, vol. 95(C), pages 93-101.
    4. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    5. Lennard, D.E., 1995. "The viability and best locations for ocean thermal energy conversion systems around the world," Renewable Energy, Elsevier, vol. 6(3), pages 359-365.
    6. Faizal, Mohammed & Ahmed, M. Rafiuddin, 2013. "Experimental studies on a closed cycle demonstration OTEC plant working on small temperature difference," Renewable Energy, Elsevier, vol. 51(C), pages 234-240.
    7. Kwak, H.-Y. & Kim, D.-J. & Jeon, J.-S., 2003. "Exergetic and thermoeconomic analyses of power plants," Energy, Elsevier, vol. 28(4), pages 343-360.
    8. Tanner, Dylan, 1995. "Ocean thermal energy conversion: Current overview and future outlook," Renewable Energy, Elsevier, vol. 6(3), pages 367-373.
    9. Yamada, Noboru & Hoshi, Akira & Ikegami, Yasuyuki, 2009. "Performance simulation of solar-boosted ocean thermal energy conversion plant," Renewable Energy, Elsevier, vol. 34(7), pages 1752-1758.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Langer, Jannis & Infante Ferreira, Carlos & Quist, Jaco, 2022. "Is bigger always better? Designing economically feasible ocean thermal energy conversion systems using spatiotemporal resource data," Applied Energy, Elsevier, vol. 309(C).
    2. Zhang, Jingzhi & Zhai, Xiaoyu & Li, Shizhen, 2020. "Numerical studies on the performance of ammonia ejectors used in ocean thermal energy conversion system," Renewable Energy, Elsevier, vol. 161(C), pages 766-776.
    3. Khosravi, A. & Syri, Sanna & Assad, M.E.H. & Malekan, M., 2019. "Thermodynamic and economic analysis of a hybrid ocean thermal energy conversion/photovoltaic system with hydrogen-based energy storage system," Energy, Elsevier, vol. 172(C), pages 304-319.
    4. Vera, D. & Baccioli, A. & Jurado, F. & Desideri, U., 2020. "Modeling and optimization of an ocean thermal energy conversion system for remote islands electrification," Renewable Energy, Elsevier, vol. 162(C), pages 1399-1414.
    5. Guillermo Lopez & Maria de los Angeles Ortega Del Rosario & Arthur James & Humberto Alvarez, 2022. "Site Selection for Ocean Thermal Energy Conversion Plants (OTEC): A Case Study in Panama," Energies, MDPI, vol. 15(9), pages 1-24, April.
    6. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    7. Langer, Jannis & Quist, Jaco & Blok, Kornelis, 2020. "Recent progress in the economics of ocean thermal energy conversion: Critical review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    8. Xiao, Chenglong & Hu, Zheng & Chen, Yongping & Zhang, Chengbin, 2024. "Thermodynamic, economic, exergoeconomic analysis of an integrated ocean thermal energy conversion system," Renewable Energy, Elsevier, vol. 225(C).
    9. Yang, Min-Hsiung & Yeh, Rong-Hua, 2022. "Investigation of the potential of R717 blends as working fluids in the organic Rankine cycle (ORC) for ocean thermal energy conversion (OTEC)," Energy, Elsevier, vol. 245(C).
    10. Langer, Jannis & Cahyaningwidi, Aida Astuti & Chalkiadakis, Charis & Quist, Jaco & Hoes, Olivier & Blok, Kornelis, 2021. "Plant siting and economic potential of ocean thermal energy conversion in Indonesia a novel GIS-based methodology," Energy, Elsevier, vol. 224(C).
    11. Chen, Ruihua & Deng, Shuai & Zhao, Li & Zhao, Ruikai & Xu, Weicong, 2022. "Energy recovery from wastewater in deep-sea mining: Feasibility study on an energy supply solution with cold wastewater," Applied Energy, Elsevier, vol. 305(C).
    12. Peng, Jingping & Ge, Yunzheng & Chen, Fengyun & Liu, Lei & Wu, Haoyu & Liu, Weimin, 2022. "Theoretical and experimental study on the performance of a high-efficiency thermodynamic cycle for ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 185(C), pages 734-747.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Li, Ye & Wu, Xiaoni & Guo, Shihao, 2018. "Review of the applied mechanical problems in ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 231-244.
    2. Huo, Erguang & Chen, Wei & Deng, Zilong & Gao, Wei & Chen, Yongping, 2023. "Thermodynamic analysis and optimization of a combined cooling and power system using ocean thermal energy and solar energy," Energy, Elsevier, vol. 278(PA).
    3. Hung, T.C. & Wang, S.K. & Kuo, C.H. & Pei, B.S. & Tsai, K.F., 2010. "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources," Energy, Elsevier, vol. 35(3), pages 1403-1411.
    4. Zhang, Ji & Zhang, Xiaomeng & Zhang, Zhixiang & Zhou, Peilin & Zhang, Yan & Yuan, Han, 2022. "Performance improvement of ocean thermal energy conversion organic Rankine cycle under temperature glide effect," Energy, Elsevier, vol. 246(C).
    5. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    6. Kim, Albert S. & Kim, Hyeon-Ju & Lee, Ho-Saeng & Cha, Sangwon, 2016. "Dual-use open cycle ocean thermal energy conversion (OC-OTEC) using multiple condensers for adjustable power generation and seawater desalination," Renewable Energy, Elsevier, vol. 85(C), pages 344-358.
    7. Fábrega, F.M. & Rossi, J.S. & d'Angelo, J.V.H., 2010. "Exergetic analysis of the refrigeration system in ethylene and propylene production process," Energy, Elsevier, vol. 35(3), pages 1224-1231.
    8. Devis-Morales, Andrea & Montoya-Sánchez, Raúl A. & Osorio, Andrés F. & Otero-Díaz, Luis J., 2014. "Ocean thermal energy resources in Colombia," Renewable Energy, Elsevier, vol. 66(C), pages 759-769.
    9. Peng, Jingping & Ge, Yunzheng & Chen, Fengyun & Liu, Lei & Wu, Haoyu & Liu, Weimin, 2022. "Theoretical and experimental study on the performance of a high-efficiency thermodynamic cycle for ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 185(C), pages 734-747.
    10. Semmari, Hamza & Stitou, Driss & Mauran, Sylvain, 2012. "A novel Carnot-based cycle for ocean thermal energy conversion," Energy, Elsevier, vol. 43(1), pages 361-375.
    11. Faizal, Mohammed & Ahmed, M. Rafiuddin, 2013. "Experimental studies on a closed cycle demonstration OTEC plant working on small temperature difference," Renewable Energy, Elsevier, vol. 51(C), pages 234-240.
    12. Haydargil, Derya & Abuşoğlu, Ayşegül, 2018. "A comparative thermoeconomic cost accounting analysis and evaluation of biogas engine-powered cogeneration," Energy, Elsevier, vol. 159(C), pages 97-114.
    13. Yang, Min-Hsiung & Yeh, Rong-Hua, 2014. "Analysis of optimization in an OTEC plant using organic Rankine cycle," Renewable Energy, Elsevier, vol. 68(C), pages 25-34.
    14. Keçebaş, Ali, 2013. "Effect of reference state on the exergoeconomic evaluation of geothermal district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 462-469.
    15. Liu, Weimin & Xu, Xiaojian & Chen, Fengyun & Liu, Yanjun & Li, Shizhen & Liu, Lei & Chen, Yun, 2020. "A review of research on the closed thermodynamic cycles of ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Seyyedi, Seyyed Masoud & Ajam, Hossein & Farahat, Said, 2010. "A new criterion for the allocation of residues cost in exergoeconomic analysis of energy systems," Energy, Elsevier, vol. 35(8), pages 3474-3482.
    17. Hall, Kashawn & Kelly, Solange & Henry, Legena, 2022. "Site selection of Ocean Thermal Energy Conversion (OTEC) plants for Barbados," Renewable Energy, Elsevier, vol. 201(P2), pages 60-69.
    18. Chen, Fengyun & Liu, Lei & Peng, Jingping & Ge, Yunzheng & Wu, Haoyu & Liu, Weimin, 2019. "Theoretical and experimental research on the thermal performance of ocean thermal energy conversion system using the rankine cycle mode," Energy, Elsevier, vol. 183(C), pages 497-503.
    19. Ma, Zhesong & Wang, Yanhui & Wang, Shuxin & Yang, Yanan, 2016. "Ocean thermal energy harvesting with phase change material for underwater glider," Applied Energy, Elsevier, vol. 178(C), pages 557-566.
    20. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:1086-1094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.