IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v85y2016icp981-993.html
   My bibliography  Save this article

Climate-responsive thermal mass design for Pacific Northwest sunspaces

Author

Listed:
  • Rempel, Alexandra R.
  • Rempel, Alan W.
  • Gates, Kenneth R.
  • Shaw, Barbara

Abstract

Thermal mass is essential in passive solar spaces designed to store heat. Given the diversity of climates with useful cool-season sun, climate-responsiveness in thermal mass design might be expected; however, rules developed in the dry, sunny American Southwest dominate teaching and practice throughout the country. Evidence from the UK, Alaska, and western Oregon now suggest that conventional thermal mass rules require substantial revision for rainy, cloudy climates. To address this issue, we here employ a series of field-validated Pacific Northwest sunspace models to quantify limitations of conventional thermal mass design in the region and to reveal more suitable parameters with respect to the sizing and ground configuration of floor-based thermal mass. Results favored thermal mass in far smaller quantities, and with much-reduced ground contact, than specified by conventional rules, with optimal parameters varying by design priority: daytime warmth, evening warmth, or early-morning warmth. A subsequent field test confirmed model predictions and elucidated underlying mechanisms, supporting specific revisions of contemporary passive solar design guidelines for the Pacific Northwest and related West Coast Marine climates.

Suggested Citation

  • Rempel, Alexandra R. & Rempel, Alan W. & Gates, Kenneth R. & Shaw, Barbara, 2016. "Climate-responsive thermal mass design for Pacific Northwest sunspaces," Renewable Energy, Elsevier, vol. 85(C), pages 981-993.
  • Handle: RePEc:eee:renene:v:85:y:2016:i:c:p:981-993
    DOI: 10.1016/j.renene.2015.07.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115301233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.07.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijnen, Jack P. C., 1995. "Verification and validation of simulation models," European Journal of Operational Research, Elsevier, vol. 82(1), pages 145-162, April.
    2. Garrett, Vicki & Koontz, Tomas M., 2008. "Breaking the cycle: Producer and consumer perspectives on the non-adoption of passive solar housing in the US," Energy Policy, Elsevier, vol. 36(4), pages 1551-1566, April.
    3. Morrissey, J. & Moore, T. & Horne, R.E., 2011. "Affordable passive solar design in a temperate climate: An experiment in residential building orientation," Renewable Energy, Elsevier, vol. 36(2), pages 568-577.
    4. Demain, Colienne & Journée, Michel & Bertrand, Cédric, 2013. "Evaluation of different models to estimate the global solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 50(C), pages 710-721.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Wei & Jin, Yang & Liu, Gongliang & Li, Qing & Li, Dong, 2023. "Passive nearly zero energy retrofits of rammed earth rural residential buildings based on energy efficiency and cost-effectiveness analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    2. Qingsong Ma & Hiroatsu Fukuda & Myonghyang Lee & Takumi Kobatake & Yuko Kuma & Akihito Ozaki & Xindong Wei, 2018. "Study on Heat Utilization in an Attached Sunspace in a House with a Central Heating, Ventilation, and Air Conditioning System," Energies, MDPI, vol. 11(5), pages 1-12, May.
    3. Rempel, A.R. & Rempel, A.W. & McComas, S.M. & Duffey, S. & Enright, C. & Mishra, S., 2021. "Magnitude and distribution of the untapped solar space-heating resource in U.S. climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Qingsong Ma & Hiroatsu Fukuda & Myonghyang Lee & Takumi Kobatake & Yuko Kuma & Akihito Ozaki & Xindong Wei, 2018. "Experimental Analysis of the Thermal Performance of a Sunspace Attached to a House with a Central Air Conditioning System," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    5. Rossano Albatici & Francesco Passerini & Jens Pfafferott, 2016. "Energy Performance of Verandas in the Building Retrofit Process," Energies, MDPI, vol. 9(5), pages 1-12, May.
    6. Bastien, Diane & Athienitis, Andreas K., 2018. "Passive thermal energy storage, part 1: Design concepts and metrics," Renewable Energy, Elsevier, vol. 115(C), pages 1319-1327.
    7. Ahmad Taghdisi & Yousof Ghanbari & Mohammad Eskandari, 2020. "Energy-Conservation Considerations Through a Novel Integration of Sunspace and Solar Chimney in The Terraced Rural Dwellings," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 1-13.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uniyal, Sachin & Lodhi, Mahendra Singh & Pawar, Yogita & Thakral, Shreyasee & Garg, Purushottam Kumar & Mukherjee, Sandipan & Nautiyal, Sunil, 2024. "Passive solar heated buildings for enhancing sustainability in the Indian Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    2. Rempel, A.R. & Rempel, A.W. & McComas, S.M. & Duffey, S. & Enright, C. & Mishra, S., 2021. "Magnitude and distribution of the untapped solar space-heating resource in U.S. climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    4. Edris Yousefi Rad & Mohammad Reza Mahpeykar, 2017. "A Novel Hybrid Approach for Numerical Modeling of the Nucleating Flow in Laval Nozzle and Transonic Steam Turbine Blades," Energies, MDPI, vol. 10(9), pages 1-37, August.
    5. Tunali, S. & Batmaz, I., 2003. "A metamodeling methodology involving both qualitative and quantitative input factors," European Journal of Operational Research, Elsevier, vol. 150(2), pages 437-450, October.
    6. Diaz, Rafael & Behr, Joshua G. & Acero, Beatriz, 2022. "Coastal housing recovery in a postdisaster environment: A supply chain perspective," International Journal of Production Economics, Elsevier, vol. 247(C).
    7. Kleijnen, J.P.C., 1995. "Sensitivity analysis and optimization of system dynamics models : Regression analysis and statistical design of experiments," Other publications TiSEM 87ee6ee0-592c-4204-ac50-6, Tilburg University, School of Economics and Management.
    8. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    9. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
    10. Chi, Fang'ai & Zhang, Jianxun & Li, Gaomei & Zhu, Zongzhou & Bart, Dewancker, 2019. "An investigation of the impact of Building Azimuth on energy consumption in sizhai traditional dwellings," Energy, Elsevier, vol. 180(C), pages 594-614.
    11. Sander van der Hoog, 2017. "Deep Learning in (and of) Agent-Based Models: A Prospectus," Papers 1706.06302, arXiv.org.
    12. Aumann, Craig A., 2007. "A methodology for developing simulation models of complex systems," Ecological Modelling, Elsevier, vol. 202(3), pages 385-396.
    13. Giuliano Rancilio & Alexandre Lucas & Evangelos Kotsakis & Gianluca Fulli & Marco Merlo & Maurizio Delfanti & Marcelo Masera, 2019. "Modeling a Large-Scale Battery Energy Storage System for Power Grid Application Analysis," Energies, MDPI, vol. 12(17), pages 1-26, August.
    14. Turgut Karahüseyin & Serkan Abbasoğlu, 2022. "Performance Loss Rates of a 1 MWp PV Plant with Various Tilt Angle, Orientation and Installed Environment in the Capital of Cyprus," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    15. MacPherson, Brian & Gras, Robin, 2016. "Individual-based ecological models: Adjunctive tools or experimental systems?," Ecological Modelling, Elsevier, vol. 323(C), pages 106-114.
    16. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    17. Castaldo, Veronica Lucia & Pisello, Anna Laura & Piselli, Cristina & Fabiani, Claudia & Cotana, Franco & Santamouris, Mattheos, 2018. "How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy," Renewable Energy, Elsevier, vol. 127(C), pages 920-935.
    18. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    19. Zou, Ling & Wang, Lunche & Xia, Li & Lin, Aiwen & Hu, Bo & Zhu, Hongji, 2017. "Prediction and comparison of solar radiation using improved empirical models and Adaptive Neuro-Fuzzy Inference Systems," Renewable Energy, Elsevier, vol. 106(C), pages 343-353.
    20. Faustino Prieto & José María Sarabia & Enrique Calderín-Ojeda, 2021. "The nonlinear distribution of employment across municipalities," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(2), pages 287-307, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:85:y:2016:i:c:p:981-993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.