Time-adaptive quantile-copula for wind power probabilistic forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2011.08.015
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Frahm, Gabriel & Junker, Markus & Szimayer, Alexander, 2003. "Elliptical copulas: applicability and limitations," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 275-286, July.
- Christian Gourieroux & Alain Monfort, 2006. "(Non) consistency of the Beta Kernel Estimator for Recovery Rate Distribution," Working Papers 2006-31, Center for Research in Economics and Statistics.
- BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen VK, 2009. "Semiparametric multivariate density estimation for positive data using copulas," LIDAM Reprints CORE 2300, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
- Bouezmarni, T. & Rombouts, J.V.K., 2009.
"Semiparametric multivariate density estimation for positive data using copulas,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2040-2054, April.
- Taoufik Bouezmarni & Jeroen V.K. Rombouts, 2007. "Semiparametric Multivariate Density Estimation for Positive Data Using Copulas," Cahiers de recherche 07-08, HEC Montréal, Institut d'économie appliquée.
- BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen V.K., 2007. "Semiparametric multivariate density estimation for positive data using copulas," LIDAM Discussion Papers CORE 2007054, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Taoufik Bouezmarni & Jeroen V.K. Rombouts, 2007. "Semiparametric Multivariate Density Estimation for Positive Data Using Copulas," Cahiers de recherche 0731, CIRPEE.
- Faugeras, Olivier P., 2009. "A quantile-copula approach to conditional density estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2083-2099, October.
- Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
- Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
- K. V. Mardia, 1999. "Directional statistics and shape analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 949-957.
- Pinson, P. & Nielsen, H.Aa. & Madsen, H. & Kariniotakis, G., 2009. "Skill forecasting from ensemble predictions of wind power," Applied Energy, Elsevier, vol. 86(7-8), pages 1326-1334, July.
- Moller, Jan Kloppenborg & Nielsen, Henrik Aalborg & Madsen, Henrik, 2008. "Time-adaptive quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1292-1303, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
- Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
- Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
- Georgios Anastasiades & Patrick McSharry, 2013. "Quantile Forecasting of Wind Power Using Variability Indices," Energies, MDPI, vol. 6(2), pages 1-34, February.
- Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
- Jonathan Berrisch & Florian Ziel, 2023. "Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices," Papers 2303.10019, arXiv.org, revised Feb 2024.
- Corani, Giorgio & Azzimonti, Dario & Rubattu, Nicolò, 2024. "Probabilistic reconciliation of count time series," International Journal of Forecasting, Elsevier, vol. 40(2), pages 457-469.
- Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
- Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015.
"Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval,"
Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
- Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2012. "Bayesian Approaches to Non-parametric Estimation of Densities on the Unit Interval," Monash Econometrics and Business Statistics Working Papers 3/12, Monash University, Department of Econometrics and Business Statistics.
- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Sgouropoulos, Nikolaos & Yao, Qiwei & Yastremiz, Claudia, 2015. "Matching a distribution by matching quantiles estimation," LSE Research Online Documents on Economics 57221, London School of Economics and Political Science, LSE Library.
- J. Baixauli & Susana Alvarez, 2012. "Implied Severity Density Estimation: An Extended Semiparametric Method to Compute Credit Value at Risk," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 115-129, August.
- Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010.
"Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data,"
Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
- BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen VK & TAAMOUTI, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for alpha-mixing data," LIDAM Reprints CORE 2302, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Francis X. Diebold & Minchul Shin, 2017.
"Assessing point forecast accuracy by stochastic error distance,"
Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 588-598, October.
- Francis X. Diebold & Minchul Shin, 2014. "Assessing Point Forecast Accuracy by Stochastic Error Distance," PIER Working Paper Archive 14-038, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold & Minchul Shin, 2016. "Assessing Point Forecast Accuracy by Stochastic Error Distance," NBER Working Papers 22516, National Bureau of Economic Research, Inc.
- Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
- Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019.
"On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting,"
Energy Economics, Elsevier, vol. 79(C), pages 171-182.
- Bartosz Uniejewski & Grzegorz Marcjasz & Rafal Weron, 2017. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting. Part II – Probabilistic forecasting," HSC Research Reports HSC/17/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
- Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021.
"Focused Bayesian prediction,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
- Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier, 2019. "Focused Bayesian Prediction," Papers 1912.12571, arXiv.org, revised Aug 2020.
- Ruben Loaiza-Maya & Gael M Martin & David T. Frazier, 2020. "Focused Bayesian Prediction," Monash Econometrics and Business Statistics Working Papers 1/20, Monash University, Department of Econometrics and Business Statistics.
- Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022.
"Optimal probabilistic forecasts: When do they work?,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
- Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Andres Ramirez Hassan, 2020. "Optimal probabilistic forecasts: When do they work?," Monash Econometrics and Business Statistics Working Papers 33/20, Monash University, Department of Econometrics and Business Statistics.
- Gael M. Martin & Rub'en Loaiza-Maya & David T. Frazier & Worapree Maneesoonthorn & Andr'es Ram'irez Hassan, 2020. "Optimal probabilistic forecasts: When do they work?," Papers 2009.09592, arXiv.org.
- González Ordiano, Jorge Ángel & Gröll, Lutz & Mikut, Ralf & Hagenmeyer, Veit, 2020. "Probabilistic energy forecasting using the nearest neighbors quantile filter and quantile regression," International Journal of Forecasting, Elsevier, vol. 36(2), pages 310-323.
More about this item
Keywords
Wind power; Forecasting; Probabilistic; Density estimation; Copula; Time-adaptive;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:40:y:2012:i:1:p:29-39. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.