IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp197-204.html
   My bibliography  Save this article

Short-term predictability of photovoltaic production over Italy

Author

Listed:
  • De Felice, Matteo
  • Petitta, Marcello
  • Ruti, Paolo M.

Abstract

Photovoltaic (PV) power production increased drastically in Europe throughout the last years. Since about the 6% of electricity in Italy comes from PV, an accurate and reliable forecasting of production would be needed for an efficient management of the power grid. We investigate the possibility to forecast daily PV electricity production up to ten days without using on-site measurements of meteorological variables. Our study uses a PV production dataset of 65 Italian sites and it is divided in two parts: first, an assessment of the predictability of meteorological variables using weather forecasts; second, an analysis of predicting solar power production through data-driven modelling. We calibrate Support Vector Machine (SVM) models using available observations and then we apply the same models on the weather forecasts variables to predict daily PV power production. As expected, cloud cover variability strongly affects solar power production, we observe that while during summer the forecast error is under the 10% (slightly lower in south Italy), during winter it is abundantly above the 20%.

Suggested Citation

  • De Felice, Matteo & Petitta, Marcello & Ruti, Paolo M., 2015. "Short-term predictability of photovoltaic production over Italy," Renewable Energy, Elsevier, vol. 80(C), pages 197-204.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:197-204
    DOI: 10.1016/j.renene.2015.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115001007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Jianwu & Qiao, Wei, 2013. "Short-term solar power prediction using a support vector machine," Renewable Energy, Elsevier, vol. 52(C), pages 118-127.
    2. Sandrolini, L. & Artioli, M. & Reggiani, U., 2010. "Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis," Applied Energy, Elsevier, vol. 87(2), pages 442-451, February.
    3. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bett, Philip E & Thornton, Hazel E. & Troccoli, Alberto & De Felice, Matteo & Suckling, Emma & Dubus, Laurent & Saint-Drenan, Yves-Marie & Brayshaw, David J., 2019. "A simplified seasonal forecasting strategy, applied to wind and solar power in Europe," Earth Arxiv kzwqx, Center for Open Science.
    2. De Felice, Matteo & Soares, Marta Bruno & Alessandri, Andrea & Troccoli, Alberto, 2019. "Scoping the potential usefulness of seasonal climate forecasts for solar power management," Renewable Energy, Elsevier, vol. 142(C), pages 215-223.
    3. Xiaomei Wu & Chun Sing Lai & Chenchen Bai & Loi Lei Lai & Qi Zhang & Bo Liu, 2020. "Optimal Kernel ELM and Variational Mode Decomposition for Probabilistic PV Power Prediction," Energies, MDPI, vol. 13(14), pages 1-21, July.
    4. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
    5. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    6. Bracco, Stefano & Delfino, Federico & Ferro, Giulio & Pagnini, Luisa & Robba, Michela & Rossi, Mansueto, 2018. "Energy planning of sustainable districts: Towards the exploitation of small size intermittent renewables in urban areas," Applied Energy, Elsevier, vol. 228(C), pages 2288-2297.
    7. Wu, Wei & Tang, Xiaoping & Lv, Jiake & Yang, Chao & Liu, Hongbin, 2021. "Potential of Bayesian additive regression trees for predicting daily global and diffuse solar radiation in arid and humid areas," Renewable Energy, Elsevier, vol. 177(C), pages 148-163.
    8. Marco Pierro & Fabio Romano Liolli & Damiano Gentili & Marcello Petitta & Richard Perez & David Moser & Cristina Cornaro, 2022. "Impact of PV/Wind Forecast Accuracy and National Transmission Grid Reinforcement on the Italian Electric System," Energies, MDPI, vol. 15(23), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    2. Kumar, V. & Sunder, Sarang & Sharma, Amalesh, 2015. "Leveraging Distribution to Maximize Firm Performance in Emerging Markets," Journal of Retailing, Elsevier, vol. 91(4), pages 627-643.
    3. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    4. Garcia-Ferrer, Antonio & Bujosa-Brun, Marcos, 2000. "Forecasting OECD industrial turning points using unobserved components models with business survey data," International Journal of Forecasting, Elsevier, vol. 16(2), pages 207-227.
    5. Paroissien, Emmanuel, 2020. "Forecasting bulk prices of Bordeaux wines using leading indicators," International Journal of Forecasting, Elsevier, vol. 36(2), pages 292-309.
    6. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    7. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    8. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    9. Kumar, V. & Leone, Robert P. & Gaskins, John N., 1995. "Aggregate and disaggregate sector forecasting using consumer confidence measures," International Journal of Forecasting, Elsevier, vol. 11(3), pages 361-377, September.
    10. Hasan, M.A. & Parida, S.K., 2016. "An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 75-83.
    11. Rocha Souza, Leonardo & Jorge Soares, Lacir, 2007. "Electricity rationing and public response," Energy Economics, Elsevier, vol. 29(2), pages 296-311, March.
    12. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    13. Bontempi, Gianluca & Ben Taieb, Souhaib, 2011. "Conditionally dependent strategies for multiple-step-ahead prediction in local learning," International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699, July.
    14. Bhatti, Muhammad Tousif & Anwar, Arif A. & Ali Shah, Muhammad Azeem, 2019. "Revisiting telemetry in Pakistan’s Indus Basin Irrigation System," Papers published in Journals (Open Access), International Water Management Institute, pages 11(11):1-20.
    15. Aurelia Rybak & Aleksandra Rybak & Spas D. Kolev, 2023. "Modeling the Photovoltaic Power Generation in Poland in the Light of PEP2040: An Application of Multiple Regression," Energies, MDPI, vol. 16(22), pages 1-17, November.
    16. Edward J. Lusk, 2019. "Time Series Forecasting in Stock Trading Markets: The Turning Point Curiosity," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 8(4), pages 01-16, July.
    17. Schneider, Matthew J. & Gupta, Sachin, 2016. "Forecasting sales of new and existing products using consumer reviews: A random projections approach," International Journal of Forecasting, Elsevier, vol. 32(2), pages 243-256.
    18. Garcia-Ferrer, Antonio & Queralt, Ricardo A., 1997. "A note on forecasting international tourism demand in Spain," International Journal of Forecasting, Elsevier, vol. 13(4), pages 539-549, December.
    19. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    20. Blaskowitz, Oliver & Herwartz, Helmut, 2011. "On economic evaluation of directional forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1058-1065, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:197-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.