Effect of internal void placement on the heat transfer performance – Encapsulated phase change material for energy storage
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2015.01.035
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Archibold, Antonio Ramos & Gonzalez-Aguilar, José & Rahman, Muhammad M. & Yogi Goswami, D. & Romero, Manuel & Stefanakos, Elias K., 2014. "The melting process of storage materials with relatively high phase change temperatures in partially filled spherical shells," Applied Energy, Elsevier, vol. 116(C), pages 243-252.
- Zhao, Weihuan & Zheng, Ying & Sabol, Joseph C. & Tuzla, Kemal & Neti, Sudhakar & Oztekin, Alparslan & Chen, John C., 2013. "High temperature calorimetry and use of magnesium chloride for thermal energy storage," Renewable Energy, Elsevier, vol. 50(C), pages 988-993.
- Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2118-2132.
- Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cui, Wenlong & Yuan, Yanping & Sun, Liangliang & Cao, Xiaoling & Yang, Xiaojiao, 2016. "Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials," Renewable Energy, Elsevier, vol. 99(C), pages 1029-1037.
- Chunbo Li & Yuwei Dong & Xuelong Fu & Yanzong Wang & Qunyong Zhang, 2022. "Investigating the Effect of Spherical Aluminum Particles on the Photothermal Performance of a Solar Air Collector," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
- Songgang Qiu & Laura Solomon & Garrett Rinker, 2017. "Development of an Integrated Thermal Energy Storage and Free-Piston Stirling Generator for a Concentrating Solar Power System," Energies, MDPI, vol. 10(9), pages 1-17, September.
- Zhang, Tao & Huo, Dongxin & Wang, Chengyao & Shi, Zhengrong, 2023. "Review of the modeling approaches of phase change processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Antonio M. Puertas & Manuel S. Romero-Cano & Francisco Javier De Las Nieves & Sabina Rosiek & Francisco J. Batlles, 2017. "Simulations of Melting of Encapsulated CaCl 2 ·6H 2 O for Thermal Energy Storage Technologies," Energies, MDPI, vol. 10(4), pages 1-19, April.
- Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Mao, Qianjun & Zhang, Yamei, 2020. "Thermal energy storage performance of a three-PCM cascade tank in a high-temperature packed bed system," Renewable Energy, Elsevier, vol. 152(C), pages 110-119.
- Songgang Qiu & Laura Solomon & Ming Fang, 2018. "Study of Material Compatibility for a Thermal Energy Storage System with Phase Change Material," Energies, MDPI, vol. 11(3), pages 1-18, March.
- Prieto, M.M. & González, B., 2016. "Fluid flow and heat transfer in PCM panels arranged vertically and horizontally for application in heating systems," Renewable Energy, Elsevier, vol. 97(C), pages 331-343.
- Li, Xinyi & Niu, Cong & Li, Xiangxuan & Ma, Ting & Lu, Lin & Wang, Qiuwang, 2020. "Pore-scale investigation on effects of void cavity distribution on melting of composite phase change materials," Applied Energy, Elsevier, vol. 275(C).
- Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
- Mahdi, Jasim M. & Nsofor, Emmanuel C., 2018. "Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins," Applied Energy, Elsevier, vol. 211(C), pages 975-986.
- Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2017. "Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1320-1338.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2017. "Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1320-1338.
- Randeep Singh & Sadegh Sadeghi & Bahman Shabani, 2018. "Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications," Energies, MDPI, vol. 12(1), pages 1-20, December.
- Ma, Bingqian & Li, Jianqiang & Xu, Zhe & Peng, Zhijian, 2014. "Fe-shell/Cu-core encapsulated metallic phase change materials prepared by aerodynamic levitation method," Applied Energy, Elsevier, vol. 132(C), pages 568-574.
- Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "Adaptability research on phase change materials based technologies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 145-158.
- Zeneli, M. & Malgarinos, I. & Nikolopoulos, A. & Nikolopoulos, N. & Grammelis, P. & Karellas, S. & Kakaras, E., 2019. "Numerical simulation of a silicon-based latent heat thermal energy storage system operating at ultra-high temperatures," Applied Energy, Elsevier, vol. 242(C), pages 837-853.
- Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
- Jacob, Rhys & Bruno, Frank, 2015. "Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 79-87.
- Gupta, Rajan & Shinde, Shraddha & Yella, Aswani & Subramaniam, C. & Saha, Sandip K., 2020. "Thermomechanical characterisations of PTFE, PEEK, PEKK as encapsulation materials for medium temperature solar applications," Energy, Elsevier, vol. 194(C).
- Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
- Agnieszka Ochman & Wei-Qin Chen & Przemysław Błasiak & Michał Pomorski & Sławomir Pietrowicz, 2021. "The Use of Capsuled Paraffin Wax in Low-Temperature Thermal Energy Storage Applications: An Experimental and Numerical Investigation," Energies, MDPI, vol. 14(3), pages 1-27, January.
- Songgang Qiu & Laura Solomon & Garrett Rinker, 2017. "Development of an Integrated Thermal Energy Storage and Free-Piston Stirling Generator for a Concentrating Solar Power System," Energies, MDPI, vol. 10(9), pages 1-17, September.
- Alizadeh, M. & Sadrameli, S.M., 2016. "Development of free cooling based ventilation technology for buildings: Thermal energy storage (TES) unit, performance enhancement techniques and design considerations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 619-645.
- Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
- Abokersh, Mohamed Hany & El-Morsi, Mohamed & Sharaf, Osama & Abdelrahman, Wael, 2017. "An experimental evaluation of direct flow evacuated tube solar collector integrated with phase change material," Energy, Elsevier, vol. 139(C), pages 1111-1125.
- Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
- Castell, A. & Solé, C., 2015. "An overview on design methodologies for liquid–solid PCM storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 289-307.
- Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
- Liu, Zhen-hua & Zheng, Bao-chen & Wang, Qian & Li, Suang-Suang, 2015. "Study on the thermal storage performance of a gravity-assisted heat-pipe thermal storage unit with granular high-temperature phase-change materials," Energy, Elsevier, vol. 81(C), pages 754-765.
- Zahir, Md. Hasan & Mohamed, Shamseldin A. & Saidur, R. & Al-Sulaiman, Fahad A., 2019. "Supercooling of phase-change materials and the techniques used to mitigate the phenomenon," Applied Energy, Elsevier, vol. 240(C), pages 793-817.
More about this item
Keywords
Encapsulated phase change materials; Thermal energy storage; Void; Concentrated solar power;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:78:y:2015:i:c:p:438-447. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.