Environmental impact associated with the substitution of internal combustion vehicles by fuel cell vehicles refueled with hydrogen generated by electrolysis using the power grid. An estimation focused on the Autonomous Region of Murcia (Spain)
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2014.11.082
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhao, Jimin & Melaina, Marc W., 2006. "Transition to hydrogen-based transportation in China: Lessons learned from alternative fuel vehicle programs in the United States and China," Energy Policy, Elsevier, vol. 34(11), pages 1299-1309, July.
- Ni, Jason & Johnson, Nils & Ogden, Joan M & Yang, Christopher & Johnson, Joshua, 2005. "Estimating Hydrogen Demand Distribution Using Geographic Information Systems (GIS)," Institute of Transportation Studies, Working Paper Series qt9b8424mf, Institute of Transportation Studies, UC Davis.
- Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt7p3500g2, Institute of Transportation Studies, UC Davis.
- Ogden, Joan M, 2005. "The Transition to Hydrogen," Institute of Transportation Studies, Working Paper Series qt01k662vh, Institute of Transportation Studies, UC Davis.
- Yang, Christopher & Ogden, Joan M, 2005. "Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production," Institute of Transportation Studies, Working Paper Series qt9gg2q7zx, Institute of Transportation Studies, UC Davis.
- Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt1804p4vw, Institute of Transportation Studies, UC Davis.
- Yang, Christopher & Ogden, Joan M, 2005. "Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production," Institute of Transportation Studies, Working Paper Series qt99k6k11h, Institute of Transportation Studies, UC Davis.
- Urbina, Antonio, 2014. "Solar electricity in a changing environment: The case of Spain," Renewable Energy, Elsevier, vol. 68(C), pages 264-269.
- Ogden, Joan, 2005. "The Transition to Hydrogen," University of California Transportation Center, Working Papers qt384374d5, University of California Transportation Center.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xu, Xinhai & Xu, Ben & Dong, Jun & Liu, Xiaotong, 2017. "Near-term analysis of a roll-out strategy to introduce fuel cell vehicles and hydrogen stations in Shenzhen China," Applied Energy, Elsevier, vol. 196(C), pages 229-237.
- Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
- Lin, Haiyang & Wu, Qiuwei & Chen, Xinyu & Yang, Xi & Guo, Xinyang & Lv, Jiajun & Lu, Tianguang & Song, Shaojie & McElroy, Michael, 2021. "Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China," Renewable Energy, Elsevier, vol. 173(C), pages 569-580.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bento, Nuno, 2008. "Building and interconnecting hydrogen networks: Insights from the electricity and gas experience in Europe," Energy Policy, Elsevier, vol. 36(8), pages 3009-3018, August.
- Chang, Le & Li, Zheng & Gao, Dan & Huang, He & Ni, Weidou, 2007. "Pathways for hydrogen infrastructure development in China: Integrated assessment for vehicle fuels and a case study of Beijing," Energy, Elsevier, vol. 32(11), pages 2023-2037.
- Yang, Christopher & Nicholas, Michael A & Ogden, Joan M, 2006. "Comparison of Idealized and Real-World City Station Citing Models for Hydrogen Distribution," Institute of Transportation Studies, Working Paper Series qt06p1q3z3, Institute of Transportation Studies, UC Davis.
- Parker, Nathan C, 2007. "Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw," Institute of Transportation Studies, Working Paper Series qt8sp9n37c, Institute of Transportation Studies, UC Davis.
- Parker, Nathan C. & Ogden, Joan M. & Fan, Yueyue, 2008. "The role of biomass in California's hydrogen economy," Energy Policy, Elsevier, vol. 36(10), pages 3925-3939, October.
- Parker, Nathan, 2007. "Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw," Institute of Transportation Studies, Working Paper Series qt5kr728sp, Institute of Transportation Studies, UC Davis.
- Steven Jackson & Eivind Brodal, 2021. "Optimization of a Mixed Refrigerant Based H 2 Liquefaction Pre-Cooling Process and Estimate of Liquefaction Performance with Varying Ambient Temperature," Energies, MDPI, vol. 14(19), pages 1-18, September.
- Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
- Haider, Minza & Davis, Matthew & Kumar, Amit, 2024. "Development of a framework to assess the greenhouse gas mitigation potential from the adoption of low-carbon road vehicles in a hydrocarbon-rich region," Applied Energy, Elsevier, vol. 358(C).
- Becker, W.L. & Braun, R.J. & Penev, M. & Melaina, M., 2012. "Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units," Energy, Elsevier, vol. 47(1), pages 99-115.
- Enrique Saborit & Eduardo García-Rosales Vazquez & M. Dolores Storch de Gracia Calvo & Gema María Rodado Nieto & Pablo Martínez Fondón & Alberto Abánades, 2023. "Alternatives for Transport, Storage in Port and Bunkering Systems for Offshore Energy to Green Hydrogen," Energies, MDPI, vol. 16(22), pages 1-12, November.
- Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021.
"Optimal supply chains and power sector benefits of green hydrogen,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
- Fabian Stockl & Wolf-Peter Schill & Alexander Zerrahn, 2020. "Optimal supply chains and power sector benefits of green hydrogen," Papers 2005.03464, arXiv.org, revised Jul 2021.
- Lin, Zhenhong & Fan, Yueyue & Ogden, Joan M & Chen, Chien-Wei, 2008. "Optimized Pathways for Regional H2 Infrastructure Transitions: A Case Study for Southern California," Institute of Transportation Studies, Working Paper Series qt9mk5n8jn, Institute of Transportation Studies, UC Davis.
- Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
- Byun, Manhee & Kim, Heehyang & Lee, Hyunjun & Lim, Dongjun & Lim, Hankwon, 2022. "Conceptual design for methanol steam reforming in serial packed-bed reactors and membrane filters: Economic and environmental perspectives," Energy, Elsevier, vol. 241(C).
- Yongxi Huang & Yueyue Fan & Nils Johnson, 2010. "Multistage System Planning for Hydrogen Production and Distribution," Networks and Spatial Economics, Springer, vol. 10(4), pages 455-472, December.
- Dougherty, William & Kartha, Sivan & Rajan, Chella & Lazarus, Michael & Bailie, Alison & Runkle, Benjamin & Fencl, Amanda, 2009. "Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA," Energy Policy, Elsevier, vol. 37(1), pages 56-67, January.
- Olateju, Babatunde & Kumar, Amit, 2011. "Hydrogen production from wind energy in Western Canada for upgrading bitumen from oil sands," Energy, Elsevier, vol. 36(11), pages 6326-6339.
- Niermann, M. & Timmerberg, S. & Drünert, S. & Kaltschmitt, M., 2021. "Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
More about this item
Keywords
Fuel cell vehicles; Substitution ratio; Pollution; Electrolysis; Electric vehicles; Electrical power grid;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:77:y:2015:i:c:p:79-85. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.