IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v173y2021icp569-580.html
   My bibliography  Save this article

Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China

Author

Listed:
  • Lin, Haiyang
  • Wu, Qiuwei
  • Chen, Xinyu
  • Yang, Xi
  • Guo, Xinyang
  • Lv, Jiajun
  • Lu, Tianguang
  • Song, Shaojie
  • McElroy, Michael

Abstract

Hydrogen can play a key role in facilitating the transition to a future deeply decarbonized energy system and can help accommodate higher penetrations of renewables in the power system. Arguments to justify this conclusion are supported by an analysis based on real-world data from China’s Western Inner Mongolia (WIM). The economic feasibility and decarbonization potential of renewable-based hydrogen production are discussed through an integrated power-hydrogen-emission analytical framework. The framework combines a high-resolution wind resource analysis with hourly simulation for the operation of power systems and hydrogen production considering technical and economic specifications on selection of three different types of electrolyzers and two operating modes. The results indicate that using wind power to produce hydrogen could provide a cost-competitive alternative (<2 $kg−1) to WIM’s current coal-dominated hydrogen manufacturing system, contributing at the same time to important reductions in wind curtailment and CO2 emissions. The levelized cost for hydrogen production is projected to decrease in the coming decade consistent with increases in wind power capacity and decreases in capital costs for electrolyzers. Lessons learned from the study can be applied to other regions and countries to explore possibilities for larger scale economically justified and carbon saving hydrogen production with renewables.

Suggested Citation

  • Lin, Haiyang & Wu, Qiuwei & Chen, Xinyu & Yang, Xi & Guo, Xinyang & Lv, Jiajun & Lu, Tianguang & Song, Shaojie & McElroy, Michael, 2021. "Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China," Renewable Energy, Elsevier, vol. 173(C), pages 569-580.
  • Handle: RePEc:eee:renene:v:173:y:2021:i:c:p:569-580
    DOI: 10.1016/j.renene.2021.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121005279
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Ning & Lu, Xi & McElroy, Michael B. & Nielsen, Chris P. & Chen, Xinyu & Deng, Yu & Kang, Chongqing, 2016. "Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage," Applied Energy, Elsevier, vol. 184(C), pages 987-994.
    2. López Cascales, J.J. & Juan-Segovia, M.C. & Ibáñez Molina, J. & Sánchez Vera, J. & Vivo Vivo, P.M., 2015. "Environmental impact associated with the substitution of internal combustion vehicles by fuel cell vehicles refueled with hydrogen generated by electrolysis using the power grid. An estimation focused," Renewable Energy, Elsevier, vol. 77(C), pages 79-85.
    3. Guoliang Luo & Erli Dan & Xiaochun Zhang & Yiwei Guo, 2018. "Why the Wind Curtailment of Northwest China Remains High," Sustainability, MDPI, vol. 10(2), pages 1-26, February.
    4. Koytsoumpa, Efthymia Ioanna & Karellas, Sotirios & Kakaras, Emmanouil, 2019. "Modelling of Substitute Natural Gas production via combined gasification and power to fuel," Renewable Energy, Elsevier, vol. 135(C), pages 1354-1370.
    5. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    6. Larscheid, Patrick & Lück, Lara & Moser, Albert, 2018. "Potential of new business models for grid integrated water electrolysis," Renewable Energy, Elsevier, vol. 125(C), pages 599-608.
    7. Frank, Elimar & Gorre, Jachin & Ruoss, Fabian & Friedl, Markus J., 2018. "Calculation and analysis of efficiencies and annual performances of Power-to-Gas systems," Applied Energy, Elsevier, vol. 218(C), pages 217-231.
    8. Kotowicz, Janusz & Węcel, Daniel & Jurczyk, Michał, 2018. "Analysis of component operation in power-to-gas-to-power installations," Applied Energy, Elsevier, vol. 216(C), pages 45-59.
    9. Toghyani, S. & Afshari, E. & Baniasadi, E. & Shadloo, M.S., 2019. "Energy and exergy analyses of a nanofluid based solar cooling and hydrogen production combined system," Renewable Energy, Elsevier, vol. 141(C), pages 1013-1025.
    10. Mehrjerdi, Hasan, 2020. "Peer-to-peer home energy management incorporating hydrogen storage system and solar generating units," Renewable Energy, Elsevier, vol. 156(C), pages 183-192.
    11. Han, Xingning & Chen, Xinyu & McElroy, Michael B. & Liao, Shiwu & Nielsen, Chris P. & Wen, Jinyu, 2019. "Modeling formulation and validation for accelerated simulation and flexibility assessment on large scale power systems under higher renewable penetrations," Applied Energy, Elsevier, vol. 237(C), pages 145-154.
    12. Pan, Guangsheng & Gu, Wei & Qiu, Haifeng & Lu, Yuping & Zhou, Suyang & Wu, Zhi, 2020. "Bi-level mixed-integer planning for electricity-hydrogen integrated energy system considering levelized cost of hydrogen," Applied Energy, Elsevier, vol. 270(C).
    13. Ishaq, H. & Dincer, I., 2021. "Comparative assessment of renewable energy-based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Ale, B.B. & Bade Shrestha, S.O., 2009. "Introduction of hydrogen vehicles in Kathmandu Valley: A clean and sustainable way of transportation," Renewable Energy, Elsevier, vol. 34(6), pages 1432-1437.
    15. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    16. Robinius, Martin & Raje, Tanmay & Nykamp, Stefan & Rott, Tobias & Müller, Martin & Grube, Thomas & Katzenbach, Burkhard & Küppers, Stefan & Stolten, Detlef, 2018. "Power-to-Gas: Electrolyzers as an alternative to network expansion – An example from a distribution system operator," Applied Energy, Elsevier, vol. 210(C), pages 182-197.
    17. van der Roest, Els & Snip, Laura & Fens, Theo & van Wijk, Ad, 2020. "Introducing Power-to-H3: Combining renewable electricity with heat, water and hydrogen production and storage in a neighbourhood," Applied Energy, Elsevier, vol. 257(C).
    18. Kotowicz, Janusz & Bartela, Łukasz & Węcel, Daniel & Dubiel, Klaudia, 2017. "Hydrogen generator characteristics for storage of renewably-generated energy," Energy, Elsevier, vol. 118(C), pages 156-171.
    19. Zhong, Haiwang & Xia, Qing & Chen, Yuguo & Kang, Chongqing, 2015. "Energy-saving generation dispatch toward a sustainable electric power industry in China," Energy Policy, Elsevier, vol. 83(C), pages 14-25.
    20. Deymi-Dashtebayaz, Mahdi & Ebrahimi-Moghadam, Amir & Pishbin, Seyyed Iman & Pourramezan, Mahdi, 2019. "Investigating the effect of hydrogen injection on natural gas thermo-physical properties with various compositions," Energy, Elsevier, vol. 167(C), pages 235-245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Mengxiao & Huang, Xiaomei & Hu, Yelong & Lyu, Shan, 2022. "Effects on the performance of domestic gas appliances operated on natural gas mixed with hydrogen," Energy, Elsevier, vol. 244(PA).
    2. Wang, Tiantian & Liu, Xuemin & Zhang, Yang & Zhang, Hai, 2024. "Thermodynamic and emission characteristics of a hydrogen-enriched natural gas-fired boiler integrated with external flue gas recirculation and waste heat recovery," Applied Energy, Elsevier, vol. 358(C).
    3. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2024. "Optimal design of a renewable hydrogen production system by coordinating multiple PV arrays and multiple electrolyzers," Renewable Energy, Elsevier, vol. 225(C).
    4. Ahshan, Razzaqul & Onen, Ahmet & Al-Badi, Abdullah H., 2022. "Assessment of wind-to-hydrogen (Wind-H2) generation prospects in the Sultanate of Oman," Renewable Energy, Elsevier, vol. 200(C), pages 271-282.
    5. Superchi, Francesco & Papi, Francesco & Mannelli, Andrea & Balduzzi, Francesco & Ferro, Francesco Maria & Bianchini, Alessandro, 2023. "Development of a reliable simulation framework for techno-economic analyses on green hydrogen production from wind farms using alkaline electrolyzers," Renewable Energy, Elsevier, vol. 207(C), pages 731-742.
    6. Kountouris, Ioannis & Langer, Lissy & Bramstoft, Rasmus & Münster, Marie & Keles, Dogan, 2023. "Power-to-X in energy hubs: A Danish case study of renewable fuel production," Energy Policy, Elsevier, vol. 175(C).
    7. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    8. Agbonaye, Osaru & Keatley, Patrick & Huang, Ye & Odiase, Friday O. & Hewitt, Neil, 2022. "Value of demand flexibility for managing wind energy constraint and curtailment," Renewable Energy, Elsevier, vol. 190(C), pages 487-500.
    9. Genovese, Matteo & Fragiacomo, Petronilla, 2021. "Parametric technical-economic investigation of a pressurized hydrogen electrolyzer unit coupled with a storage compression system," Renewable Energy, Elsevier, vol. 180(C), pages 502-515.
    10. Sanchez, Nestor & Ruiz, Ruth & Rödl, Anne & Cobo, Martha, 2021. "Technical and environmental analysis on the power production from residual biomass using hydrogen as energy vector," Renewable Energy, Elsevier, vol. 175(C), pages 825-839.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janke, Leandro & McDonagh, Shane & Weinrich, Sören & Murphy, Jerry & Nilsson, Daniel & Hansson, Per-Anders & Nordberg, Åke, 2020. "Optimizing power-to-H2 participation in the Nord Pool electricity market: Effects of different bidding strategies on plant operation," Renewable Energy, Elsevier, vol. 156(C), pages 820-836.
    2. Zheng, Yi & You, Shi & Huang, Chunjun & Jin, Xin, 2023. "Model-based economic analysis of off-grid wind/hydrogen systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    4. Fischer, David & Kaufmann, Florian & Hollinger, Raphael & Voglstätter, Christopher, 2018. "Real live demonstration of MPC for a power-to-gas plant," Applied Energy, Elsevier, vol. 228(C), pages 833-842.
    5. Son, Yeong Geon & Oh, Byeong Chan & Acquah, Moses Amoasi & Kim, Sung Yul, 2023. "Optimal facility combination set of integrated energy system based on consensus point between independent system operator and independent power producer," Energy, Elsevier, vol. 266(C).
    6. Xing, Xuetao & Lin, Jin & Song, Yonghua & Hu, Qiang & Zhou, You & Mu, Shujun, 2018. "Optimization of hydrogen yield of a high-temperature electrolysis system with coordinated temperature and feed factors at various loading conditions: A model-based study," Applied Energy, Elsevier, vol. 232(C), pages 368-385.
    7. Chien, FengSheng & Ngo, Quang-Thanh & Hsu, Ching-Chi & Chau, Ka Yin & Mohsin, Muhammad, 2021. "Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification," MPRA Paper 109667, University Library of Munich, Germany.
    8. Bellocchi, Sara & De Falco, Marcello & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2019. "Opportunities for power-to-Gas and Power-to-liquid in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 175(C), pages 847-861.
    9. Nyangon, Joseph & Darekar, Ayesha, 2024. "Advancements in hydrogen energy systems: A review of levelized costs, financial incentives and technological innovations," Innovation and Green Development, Elsevier, vol. 3(3).
    10. Fiammetta Rita Bianchi & Barbara Bosio, 2021. "Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    11. Bhandari, Ramchandra & Shah, Ronak Rakesh, 2021. "Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany," Renewable Energy, Elsevier, vol. 177(C), pages 915-931.
    12. Belderbos, Andreas & Valkaert, Thomas & Bruninx, Kenneth & Delarue, Erik & D’haeseleer, William, 2020. "Facilitating renewables and power-to-gas via integrated electrical power-gas system scheduling," Applied Energy, Elsevier, vol. 275(C).
    13. Daniel Węcel & Michał Jurczyk & Wojciech Uchman & Anna Skorek-Osikowska, 2020. "Investigation on System for Renewable Electricity Storage in Small Scale Integrating Photovoltaics, Batteries, and Hydrogen Generator," Energies, MDPI, vol. 13(22), pages 1-19, November.
    14. Hurtubia, Byron & Sauma, Enzo, 2021. "Economic and environmental analysis of hydrogen production when complementing renewable energy generation with grid electricity," Applied Energy, Elsevier, vol. 304(C).
    15. Kotowicz, Janusz & Uchman, Wojciech & Jurczyk, Michał & Sekret, Robert, 2023. "Evaluation of the potential for distributed generation of green hydrogen using metal-hydride storage methods," Applied Energy, Elsevier, vol. 344(C).
    16. Xu, Da & Bai, Ziyi & Jin, Xiaolong & Yang, Xiaodong & Chen, Shuangyin & Zhou, Ming, 2022. "A mean-variance portfolio optimization approach for high-renewable energy hub," Applied Energy, Elsevier, vol. 325(C).
    17. Gorre, Jachin & Ruoss, Fabian & Karjunen, Hannu & Schaffert, Johannes & Tynjälä, Tero, 2020. "Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation," Applied Energy, Elsevier, vol. 257(C).
    18. Cesare Saccani & Marco Pellegrini & Alessandro Guzzini, 2020. "Analysis of the Existing Barriers for the Market Development of Power to Hydrogen (P2H) in Italy," Energies, MDPI, vol. 13(18), pages 1-29, September.
    19. Schlund, David & Theile, Philipp, 2021. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," EWI Working Papers 2021-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    20. Frank, Elimar & Gorre, Jachin & Ruoss, Fabian & Friedl, Markus J., 2018. "Calculation and analysis of efficiencies and annual performances of Power-to-Gas systems," Applied Energy, Elsevier, vol. 218(C), pages 217-231.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:173:y:2021:i:c:p:569-580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.