IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt99k6k11h.html
   My bibliography  Save this paper

Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production

Author

Listed:
  • Yang, Christopher
  • Ogden, Joan M

Abstract

Proceedings of the National Hydrogen Association Annual Hydrogen Conference (NHA 2005), Washington, DC, March 29 - April 1, 2005 Hydrogen offers a wide range of future environmental and social benefits, when used as a fuel for applications such as light duty vehicles and stationary power. These potential benefits include significant or complete reductions in point-of-use criteria emissions, lower life-cycle CO2 emissions, higher end-use and life-cycle efficiency, and a shift (with respect to transportation fuels) to a range of widely available feedstocks. Despite the potential benefits of a hydrogen economy, there are many challenges as well. One of the most critical is the tremendous cost and investment associated with developing and transitioning to an extensive transportation network based upon hydrogen. The widely-discussed "chicken and egg" problem focuses on the difficulty in building vehicles and hydrogen supply to meet a small and growing demand. While many current studies of the 'Hydrogen Economy' present a steady-state portrait of a mature energy system including H2 production, distribution and utilization, the transitional issues that are embodied in the chicken and egg problem are not addressed. Modeling the transition to a hydrogen economy is more complex than these static analyses because of dynamic nature of the problem. The transition costs will be determined by the size of the production, distribution and other infrastructure components and the economies of scale associated with these components and with the major shift in the transportation sector. Some analysts believe that in the near-term, infrastructure will be built up by means of distributed production of hydrogen at refueling stations by fuel processors or electrolyzers, which will lessen the initial infrastructure investment. These systems take advantage of existing energy distribution infrastructure (natural gas and electricity) reducing the capital expenditure requirements for hydrogen infrastructure. Only after significant maturation and market penetration of vehicles will the hydrogen demand be large enough to take advantage of the economies of scale associated with a dedicated infrastructure with large centralized hydrogen energy production plants and hydrogen pipeline distribution. In general, there is a trade-off between production costs and distribution costs that impacts a decision when to move from distributed to centralized hydrogen production. One key question that this analysis will explore is when and under what circumstances this transition could occur.

Suggested Citation

  • Yang, Christopher & Ogden, Joan M, 2005. "Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production," Institute of Transportation Studies, Working Paper Series qt99k6k11h, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt99k6k11h
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/99k6k11h.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. López Cascales, J.J. & Juan-Segovia, M.C. & Ibáñez Molina, J. & Sánchez Vera, J. & Vivo Vivo, P.M., 2015. "Environmental impact associated with the substitution of internal combustion vehicles by fuel cell vehicles refueled with hydrogen generated by electrolysis using the power grid. An estimation focused," Renewable Energy, Elsevier, vol. 77(C), pages 79-85.
    2. Bento, Nuno, 2008. "Building and interconnecting hydrogen networks: Insights from the electricity and gas experience in Europe," Energy Policy, Elsevier, vol. 36(8), pages 3009-3018, August.
    3. Ogden, Joan M & Yang, Christopher, 2005. "Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design," Institute of Transportation Studies, Working Paper Series qt4tf8m6zx, Institute of Transportation Studies, UC Davis.
    4. Yang, Christopher & Nicholas, Michael A & Ogden, Joan M, 2006. "Comparison of Idealized and Real-World City Station Citing Models for Hydrogen Distribution," Institute of Transportation Studies, Working Paper Series qt06p1q3z3, Institute of Transportation Studies, UC Davis.
    5. Ogden, J & Yang, Christopher, 2005. "Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design," Institute of Transportation Studies, Working Paper Series qt4xb940vg, Institute of Transportation Studies, UC Davis.

    More about this item

    Keywords

    UCD-ITS-RP-05-23; Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt99k6k11h. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.