IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v74y2015icp796-802.html
   My bibliography  Save this article

The effects of surge motion of the floating platform on hydrodynamics performance of horizontal-axis tidal current turbine

Author

Listed:
  • Zhang, Liang
  • Wang, Shu-qi
  • Sheng, Qi-hu
  • Jing, Feng-mei
  • Ma, Yong

Abstract

Under practical operation conditions, hydrodynamic characteristics of floating horizontal-axis turbine are affected by the wave-induced motion response of the floating platform for the turbine system. In this thesis, CFX software is adopted to analyze the hydrodynamic performance of the turbine in constant inflow with the turbine being forced vibrating and to study how the hydrodynamic performance of the turbine is influenced by surge frequency, surge amplitude and speed ratio. Based on the simulation data from CFX, axial damping coefficient can be obtained by least square fitting the time-varying axial force curves of surging turbine. The simulation results demonstrate that compared with turbine only rotating in constant inflow, shaft loads and energy utilization ratio of the surging turbine experience oscillations respectively; the oscillation amplitudes of these two parameters have a positive correlation with the frequency and amplitude of the surge and speed ratio; the frequency and amplitude of the surge have little impact on axial damping coefficient but this coefficient is positively proportioned to the rotational speed of the turbine. The results of this study can provide data to study motion response of floating platform for floating tidal current turbine system and control design of the output electricity.

Suggested Citation

  • Zhang, Liang & Wang, Shu-qi & Sheng, Qi-hu & Jing, Feng-mei & Ma, Yong, 2015. "The effects of surge motion of the floating platform on hydrodynamics performance of horizontal-axis tidal current turbine," Renewable Energy, Elsevier, vol. 74(C), pages 796-802.
  • Handle: RePEc:eee:renene:v:74:y:2015:i:c:p:796-802
    DOI: 10.1016/j.renene.2014.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114005515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2008. "The prediction of the hydrodynamic performance of marine current turbines," Renewable Energy, Elsevier, vol. 33(5), pages 1085-1096.
    2. Lee, Ju Hyun & Park, Sunho & Kim, Dong Hwan & Rhee, Shin Hyung & Kim, Moon-Chan, 2012. "Computational methods for performance analysis of horizontal axis tidal stream turbines," Applied Energy, Elsevier, vol. 98(C), pages 512-523.
    3. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    4. Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2006. "Hydrodynamics of marine current turbines," Renewable Energy, Elsevier, vol. 31(2), pages 249-256.
    5. Choi, Hyen-Jun & Zullah, Mohammed Asid & Roh, Hyoung-Woon & Ha, Pil-Su & Oh, Sueg-Young & Lee, Young-Ho, 2013. "CFD validation of performance improvement of a 500 kW Francis turbine," Renewable Energy, Elsevier, vol. 54(C), pages 111-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Ke & Ji, Renwei & Zhang, Jianhua & Li, Yan & Wang, Bin, 2021. "Investigations on the hydrodynamic interference of the multi-rotor vertical axis tidal current turbine," Renewable Energy, Elsevier, vol. 169(C), pages 752-764.
    2. Wang, Shu-qi & Sun, Ke & Xu, Gang & Liu, Yong-tao & Bai, Xu, 2017. "Hydrodynamic analysis of horizontal-axis tidal current turbine with rolling and surging coupled motions," Renewable Energy, Elsevier, vol. 102(PA), pages 87-97.
    3. Wang, Shu-qi & Cui, Jie & Ye, Ren-chuan & Chen, Zhong-fei & Zhang, Liang, 2019. "Study of the hydrodynamic performance prediction method for a horizontal-axis tidal current turbine with coupled rotation and surging motion," Renewable Energy, Elsevier, vol. 135(C), pages 313-325.
    4. Mei, Yunlei & Jing, Fengmei & Lu, Qiang & Guo, Bin, 2024. "Study on the hydrodynamic and wake characteristics of variable speed control of horizontal axis tidal turbine under surge motion," Energy, Elsevier, vol. 298(C).
    5. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    6. Li, Liang & Gao, Yan & Yuan, Zhiming & Day, Sandy & Hu, Zhiqiang, 2018. "Dynamic response and power production of a floating integrated wind, wave and tidal energy system," Renewable Energy, Elsevier, vol. 116(PA), pages 412-422.
    7. Gu, Ya-jing & Lin, Yong-gang & Xu, Quan-kun & Liu, Hong-wei & Li, Wei, 2018. "Blade-pitch system for tidal current turbines with reduced variation pitch control strategy based on tidal current velocity preview," Renewable Energy, Elsevier, vol. 115(C), pages 149-158.
    8. Brown, S.A. & Ransley, E.J. & Xie, N. & Monk, K. & De Angelis, G.M. & Nicholls-Lee, R. & Guerrini, E. & Greaves, D.M., 2021. "On the impact of motion-thrust coupling in floating tidal energy applications," Applied Energy, Elsevier, vol. 282(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shu-qi & Sun, Ke & Xu, Gang & Liu, Yong-tao & Bai, Xu, 2017. "Hydrodynamic analysis of horizontal-axis tidal current turbine with rolling and surging coupled motions," Renewable Energy, Elsevier, vol. 102(PA), pages 87-97.
    2. Wang, Wen-Quan & Yin, Rui & Yan, Yan, 2019. "Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine," Renewable Energy, Elsevier, vol. 133(C), pages 91-102.
    3. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2014. "Marine current energy resource assessment and design of a marine current turbine for Fiji," Renewable Energy, Elsevier, vol. 65(C), pages 14-22.
    4. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    5. Wang, Shu-qi & Cui, Jie & Ye, Ren-chuan & Chen, Zhong-fei & Zhang, Liang, 2019. "Study of the hydrodynamic performance prediction method for a horizontal-axis tidal current turbine with coupled rotation and surging motion," Renewable Energy, Elsevier, vol. 135(C), pages 313-325.
    6. Uşar, D. & Bal, Ş., 2015. "Cavitation simulation on horizontal axis marine current turbines," Renewable Energy, Elsevier, vol. 80(C), pages 15-25.
    7. Luznik, Luksa & Flack, Karen A. & Lust, Ethan E. & Taylor, Katharin, 2013. "The effect of surface waves on the performance characteristics of a model tidal turbine," Renewable Energy, Elsevier, vol. 58(C), pages 108-114.
    8. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    9. Huang, B. & Kanemoto, T., 2015. "Multi-objective numerical optimization of the front blade pitch angle distribution in a counter-rotating type horizontal-axis tidal turbine," Renewable Energy, Elsevier, vol. 81(C), pages 837-844.
    10. Li, Wei & Zhou, Hongbin & Liu, Hongwei & Lin, Yonggang & Xu, Quankun, 2016. "Review on the blade design technologies of tidal current turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 414-422.
    11. Seo, Jeonghwa & Lee, Seung-Jae & Choi, Woo-Sik & Park, Sung Taek & Rhee, Shin Hyung, 2016. "Experimental study on kinetic energy conversion of horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 97(C), pages 784-797.
    12. Nachtane, M. & Tarfaoui, M. & Goda, I. & Rouway, M., 2020. "A review on the technologies, design considerations and numerical models of tidal current turbines," Renewable Energy, Elsevier, vol. 157(C), pages 1274-1288.
    13. Silva, Paulo Augusto Strobel Freitas & Shinomiya, Léo Daiki & de Oliveira, Taygoara Felamingo & Vaz, Jerson Rogério Pinheiro & Amarante Mesquita, André Luiz & Brasil Junior, Antonio Cesar Pinho, 2017. "Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM," Applied Energy, Elsevier, vol. 185(P2), pages 1281-1291.
    14. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2013. "Design of a horizontal axis tidal current turbine," Applied Energy, Elsevier, vol. 111(C), pages 161-174.
    15. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    16. Val, Dimitri V. & Chernin, Leon & Yurchenko, Daniil V., 2014. "Reliability analysis of rotor blades of tidal stream turbines," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 26-33.
    17. Goundar, Jai N. & Ahmed, M. Rafiuddin & Lee, Young-Ho, 2012. "Numerical and experimental studies on hydrofoils for marine current turbines," Renewable Energy, Elsevier, vol. 42(C), pages 173-179.
    18. Ilias Gavriilidis & Yuner Huang, 2021. "Finite Element Analysis of Tidal Turbine Blade Subjected to Impact Loads from Sea Animals," Energies, MDPI, vol. 14(21), pages 1-20, November.
    19. Modali, Pranav K. & Vinod, Ashwin & Banerjee, Arindam, 2021. "Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays," Renewable Energy, Elsevier, vol. 177(C), pages 482-494.
    20. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:74:y:2015:i:c:p:796-802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.