IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v67y2014icp136-142.html
   My bibliography  Save this article

Economic feasibility of algal biodiesel under alternative public policies

Author

Listed:
  • Amanor-Boadu, Vincent
  • Pfromm, Peter H.
  • Nelson, Richard

Abstract

The motivation for this research was to determine the influence of public policies on economic feasibility of producing algal biodiesel in a system that produced all its energy needs internally. To achieve this, a steady-state mass balance/unit operation system was modeled first. Open raceway technology was assumed for the production of algal feedstock, and the residual biomass after oil extraction was assumed fermented to produce ethanol for the transesterification process. The project assumed the production of 50 million gallons of biodiesel per year and using about 14% of the diesel output to supplement internal energy requirements. It sold the remainder biodiesel and ethanol as pure biofuels to maximize the rents from the renewable fuel standards quota system. Assuming a peak daily yield of 500 kg algal biomass (dry basis)/ha, the results show that production of algal biodiesel under the foregoing constraints is only economically feasible with direct and indirect public policy intervention. For example, the renewable fuel standards' tracking RIN (Renewable fuel Identification Number) system provides a treasury-neutral value for biofuel producers as does the reinstatement of the renewable fuel tax credit. Additionally, the capital costs of an integrated system are such that some form of capital cost grant from the government would support the economic feasibility of the algal biodiesel production.

Suggested Citation

  • Amanor-Boadu, Vincent & Pfromm, Peter H. & Nelson, Richard, 2014. "Economic feasibility of algal biodiesel under alternative public policies," Renewable Energy, Elsevier, vol. 67(C), pages 136-142.
  • Handle: RePEc:eee:renene:v:67:y:2014:i:c:p:136-142
    DOI: 10.1016/j.renene.2013.11.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113006071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.11.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallagher, Brian J., 2011. "The economics of producing biodiesel from algae," Renewable Energy, Elsevier, vol. 36(1), pages 158-162.
    2. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    3. Harun, Razif & Jason, W.S.Y. & Cherrington, Tamara & Danquah, Michael K., 2011. "Exploring alkaline pre-treatment of microalgal biomass for bioethanol production," Applied Energy, Elsevier, vol. 88(10), pages 3464-3467.
    4. Davis, Ryan & Aden, Andy & Pienkos, Philip T., 2011. "Techno-economic analysis of autotrophic microalgae for fuel production," Applied Energy, Elsevier, vol. 88(10), pages 3524-3531.
    5. Peters, David J., 2007. "Understanding Ethanol Plant Economics: Will Boom Turn Bust?," Cornhusker Economics 306530, University of Nebraska-Lincoln, Department of Agricultural Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    3. Cruce, Jesse R. & Quinn, Jason C., 2019. "Economic viability of multiple algal biorefining pathways and the impact of public policies," Applied Energy, Elsevier, vol. 233, pages 735-746.
    4. Kallas, Zein & Gil, José María, 2015. "Do the Spanish want biodiesel? A case study in the Catalan transport sector," Renewable Energy, Elsevier, vol. 83(C), pages 398-406.
    5. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    6. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar Dayal & Drogui, Patrick & Surampalli, Rao Y., 2016. "Ultrasonication aided biodiesel production from one-step and two-step transesterification of sludge derived lipid," Energy, Elsevier, vol. 94(C), pages 401-408.
    7. Gaeta-Bernardi, André & Parente, Virginia, 2016. "Organic municipal solid waste (MSW) as feedstock for biodiesel production: A financial feasibility analysis," Renewable Energy, Elsevier, vol. 86(C), pages 1422-1432.
    8. Judd, S.J. & Al Momani, F.A.O. & Znad, H. & Al Ketife, A.M.D., 2017. "The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 379-387.
    9. Sáez-Bastante, J. & Carmona-Cabello, M. & Pinzi, S. & Dorado, M.P., 2020. "Recycling of kebab restoration grease for bioenergy production through acoustic cavitation," Renewable Energy, Elsevier, vol. 155(C), pages 1147-1155.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    2. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    3. Ramos Tercero, Elia Armandina & Domenicali, Giacomo & Bertucco, Alberto, 2014. "Autotrophic production of biodiesel from microalgae: An updated process and economic analysis," Energy, Elsevier, vol. 76(C), pages 807-815.
    4. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    5. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    6. Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
    7. Hognon, Céline & Delrue, Florian & Boissonnet, Guillaume, 2015. "Energetic and economic evaluation of Chlamydomonas reinhardtii hydrothermal liquefaction and pyrolysis through thermochemical models," Energy, Elsevier, vol. 93(P1), pages 31-40.
    8. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    9. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    11. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    12. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Pawar, Sanjay, 2016. "Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 640-653.
    14. Galadima, Ahmad & Muraza, Oki, 2014. "Biodiesel production from algae by using heterogeneous catalysts: A critical review," Energy, Elsevier, vol. 78(C), pages 72-83.
    15. Trivedi, Jayati & Aila, Mounika & Bangwal, D.P. & Kaul, Savita & Garg, M.O., 2015. "Algae based biorefinery—How to make sense?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 295-307.
    16. Nida Khan & Kumarasamy Sudhakar & Rizalman Mamat, 2021. "Role of Biofuels in Energy Transition, Green Economy and Carbon Neutrality," Sustainability, MDPI, vol. 13(22), pages 1-30, November.
    17. Doshi, Amar & Pascoe, Sean & Coglan, Louisa & Rainey, Thomas J., 2016. "Economic and policy issues in the production of algae-based biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 329-337.
    18. Sirajunnisa, Abdul Razack & Surendhiran, Duraiarasan, 2016. "Algae – A quintessential and positive resource of bioethanol production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 248-267.
    19. Sharma, Yogesh Chandra & Singh, Veena, 2017. "Microalgal biodiesel: A possible solution for India’s energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 72-88.
    20. Ziolkowska, Jadwiga R. & Simon, Leo, 2014. "Recent developments and prospects for algae-based fuels in the US," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 847-853.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:67:y:2014:i:c:p:136-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.