IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v29y2014icp847-853.html
   My bibliography  Save this article

Recent developments and prospects for algae-based fuels in the US

Author

Listed:
  • Ziolkowska, Jadwiga R.
  • Simon, Leo

Abstract

In recent years, algae-based fuels have received a growing interest of the industry sector and the US Government as a sustainable and renewable energy source. Algae constitute a unique feedstock as they contain high levels of both lipids and sugars and, thus, can be used for both biodiesel and ethanol production successively, in a two-stage process. In addition, the production of algae-based fuels shows a low environmental footprint and high energy efficiency. Algae can produce between 10 and 100 times more oil per acre as compared with traditional oil crops (e.g., oil palm) and can also grow 20–30 times faster than food crops. The production of algae does not compete with traditional crops for fresh water, high quality soil or fertilizers and, if cultivated off-shore, algae production does not require land resources at all. Furthermore, algae-based fuel is carbon-neutral, as algae assimilate similar amounts of CO2 for its growth as is released upon fuel combustion. From the policy perspective, algae-based fuels can provide a buffer for mitigating the food/feed vs. fuel problem in the long-term.

Suggested Citation

  • Ziolkowska, Jadwiga R. & Simon, Leo, 2014. "Recent developments and prospects for algae-based fuels in the US," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 847-853.
  • Handle: RePEc:eee:rensus:v:29:y:2014:i:c:p:847-853
    DOI: 10.1016/j.rser.2013.09.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113006801
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.09.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scott L. Baier & Mark Clements & Charles W. Griffiths & Jane E. Ihrig, 2009. "Biofuels impact on crop and food prices: using an interactive spreadsheet," International Finance Discussion Papers 967, Board of Governors of the Federal Reserve System (U.S.).
    2. Gallagher, Brian J., 2011. "The economics of producing biodiesel from algae," Renewable Energy, Elsevier, vol. 36(1), pages 158-162.
    3. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    4. Martin Banse & Hans van Meijl & Andrzej Tabeau & Geert Woltjer, 2008. "Will EU biofuel policies affect global agricultural markets?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 35(2), pages 117-141, June.
    5. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adeniyi, Oladapo Martins & Azimov, Ulugbek & Burluka, Alexey, 2018. "Algae biofuel: Current status and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 316-335.
    2. Su, Yujie & Song, Kaihui & Zhang, Peidong & Su, Yuqing & Cheng, Jing & Chen, Xiao, 2017. "Progress of microalgae biofuel’s commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 402-411.
    3. Ringsmuth, Andrew K. & Landsberg, Michael J. & Hankamer, Ben, 2016. "Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 134-163.
    4. Ondřej Filip & Karel Janda & Ladislav Krištoufek, 2018. "Ceny biopaliv a souvisejících komodit: analýza s použitím metod minimální kostry grafu a hierarchických stromů [Prices of Biofuels and Related Commodities: an Analysis Using Methods of Minimum Span," Politická ekonomie, Prague University of Economics and Business, vol. 2018(2), pages 218-239.
    5. Trivedi, Jayati & Aila, Mounika & Bangwal, D.P. & Kaul, Savita & Garg, M.O., 2015. "Algae based biorefinery—How to make sense?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 295-307.
    6. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    7. Perkins, Greg & Batalha, Nuno & Kumar, Adarsh & Bhaskar, Thallada & Konarova, Muxina, 2019. "Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Natalia Kujawska & Szymon Talbierz, 2020. "Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations," Sustainability, MDPI, vol. 12(23), pages 1-37, November.
    9. Escobar, Neus & Laibach, Natalie, 2021. "Sustainability check for bio-based technologies: A review of process-based and life cycle approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Azizi, Kolsoom & Keshavarz Moraveji, Mostafa & Abedini Najafabadi, Hamed, 2018. "A review on bio-fuel production from microalgal biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3046-3059.
    11. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    12. Tandon, Puja & Jin, Qiang, 2017. "Microalgae culture enhancement through key microbial approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1089-1099.
    13. Xia, Ao & Cheng, Jun & Song, Wenlu & Su, Huibo & Ding, Lingkan & Lin, Richen & Lu, Hongxiang & Liu, Jianzhong & Zhou, Junhu & Cen, Kefa, 2015. "Fermentative hydrogen production using algal biomass as feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 209-230.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    2. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    3. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    4. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    5. Nirmala, N. & Dawn, S.S., 2021. "Optimization of Chlorella variabilis. MK039712.1 lipid transesterification using Response Surface Methodology and analytical characterization of biodiesel," Renewable Energy, Elsevier, vol. 179(C), pages 1663-1673.
    6. Neto, Ana Maria Pereira & Sotana de Souza, Rafael Augusto & Leon-Nino, Amanda Denisse & da Costa, Joana D'arc Aparecida & Tiburcio, Rodolfo Sbrolini & Nunes, Thaís Abreu & Sellare de Mello, Thaís Cris, 2013. "Improvement in microalgae lipid extraction using a sonication-assisted method," Renewable Energy, Elsevier, vol. 55(C), pages 525-531.
    7. Ali, Mehmood & Watson, Ian A., 2015. "Microwave treatment of wet algal paste for enhanced solvent extraction of lipids for biodiesel production," Renewable Energy, Elsevier, vol. 76(C), pages 470-477.
    8. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    9. Souza, Simone P. & Gopal, Anand R. & Seabra, Joaquim E.A., 2015. "Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery," Energy, Elsevier, vol. 81(C), pages 373-381.
    10. Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
    11. El Shenawy, E.A. & Elkelawy, Medhat & Bastawissi, Hagar Alm-Eldin & Taha, Mohammed & Panchal, Hitesh & Sadasivuni, Kishor kumar & Thakar, Nishant, 2020. "Effect of cultivation parameters and heat management on the algae species growth conditions and biomass production in a continuous feedstock photobioreactor," Renewable Energy, Elsevier, vol. 148(C), pages 807-815.
    12. Abomohra, Abd El-Fatah & Jin, Wenbiao & Tu, Renjie & Han, Song-Fang & Eid, Mohammed & Eladel, Hamed, 2016. "Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 596-606.
    13. Haonan Zhang & Zhengquan Gao & Zhe Li & Huanmin Du & Bin Lin & Meng Cui & Yonghao Yin & Fengming Lei & Chunyu Yu & Chunxiao Meng, 2017. "Laser Radiation Induces Growth and Lipid Accumulation in the Seawater Microalga Chlorella pacifica," Energies, MDPI, vol. 10(10), pages 1-14, October.
    14. Ido, Alexander L. & de Luna, Mark Daniel G. & Capareda, Sergio C. & Maglinao, Amado L. & Nam, Hyungseok, 2018. "Application of central composite design in the optimization of lipid yield from Scenedesmus obliquus microalgae by ultrasound-assisted solvent extraction," Energy, Elsevier, vol. 157(C), pages 949-956.
    15. Esveidi Montserrat Valdovinos-García & Juan Barajas-Fernández & María de los Ángeles Olán-Acosta & Moisés Abraham Petriz-Prieto & Adriana Guzmán-López & Micael Gerardo Bravo-Sánchez, 2020. "Techno-Economic Study of CO 2 Capture of a Thermoelectric Plant Using Microalgae ( Chlorella vulgaris ) for Production of Feedstock for Bioenergy," Energies, MDPI, vol. 13(2), pages 1-19, January.
    16. Condon, Nicole & Klemick, Heather & Wolverton, Ann, 2015. "Impacts of ethanol policy on corn prices: A review and meta-analysis of recent evidence," Food Policy, Elsevier, vol. 51(C), pages 63-73.
    17. Piloto-Rodríguez, Ramón & Sánchez-Borroto, Yisel & Melo-Espinosa, Eliezer Ahmed & Verhelst, Sebastian, 2017. "Assessment of diesel engine performance when fueled with biodiesel from algae and microalgae: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 833-842.
    18. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    19. Sharifzadeh, Mahdi & Wang, Lei & Shah, Nilay, 2015. "Integrated biorefineries: CO2 utilization for maximum biomass conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 151-161.
    20. Muhammad Hanafi Azami & Mark Savill, 2017. "Pulse Detonation Assessment for Alternative Fuels," Energies, MDPI, vol. 10(3), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:29:y:2014:i:c:p:847-853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.