IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v66y2014icp1-14.html
   My bibliography  Save this article

An estimation of the enhanced geothermal systems potential for the Iberian Peninsula

Author

Listed:
  • Chamorro, César R.
  • García-Cuesta, José L.
  • Mondéjar, María E.
  • Linares, María M.

Abstract

An estimation of the Enhanced Geothermal System's theoretical technical potential for the Iberian Peninsula is presented in this work. As a first step, the temperature at different depths (from 3500 m to 9500 m, in 1000 m steps) has been estimated from existing heat flow, temperature at 1000 m and temperature at 2000 m depth data. From the obtained temperature-at-depth data, an evaluation of the available heat stored for each 1 km thick layer between 3 and 10 km depth, under some limiting hypotheses, has been made. Results are presented as the net electrical power that could be installed, considering that the available thermal energy stored is extracted during a 30 year project life. The results are presented globally for the Iberian Peninsula and separately for Portugal (continental Portugal), Spain (continental Spain plus the Balearic Islands) and for each one of the administrative regions included in the study. Nearly 6% of the surface of the Iberian Peninsula, at a depth of 3500 m has a temperature higher than 150 °C. This surface increases to more than 50% at 5500 m depth, and more than 90% at 7500 m depth. The Enhanced Geothermal System's theoretical technical potential in the Iberian Peninsula, up to a 10 km depth (3 km–10 km) and for temperatures above 150 °C, expressed as potential installed electrical power, is as high as 700 GWe, which is more than 5 times today's total electricity capacity installed in the Iberian Peninsula (renewable, conventional thermal and nuclear).

Suggested Citation

  • Chamorro, César R. & García-Cuesta, José L. & Mondéjar, María E. & Linares, María M., 2014. "An estimation of the enhanced geothermal systems potential for the Iberian Peninsula," Renewable Energy, Elsevier, vol. 66(C), pages 1-14.
  • Handle: RePEc:eee:renene:v:66:y:2014:i:c:p:1-14
    DOI: 10.1016/j.renene.2013.11.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113006538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.11.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bayer, Peter & Rybach, Ladislaus & Blum, Philipp & Brauchler, Ralf, 2013. "Review on life cycle environmental effects of geothermal power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 446-463.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    2. Ayobami Solomon Oyewo & Javier Farfan & Pasi Peltoniemi & Christian Breyer, 2018. "Repercussion of Large Scale Hydro Dam Deployment: The Case of Congo Grand Inga Hydro Project," Energies, MDPI, vol. 11(4), pages 1-30, April.
    3. Seyed Poorya Mirfallah Lialestani & David Parcerisa & Mahjoub Himi & Abbas Abbaszadeh Shahri, 2022. "Generating 3D Geothermal Maps in Catalonia, Spain Using a Hybrid Adaptive Multitask Deep Learning Procedure," Energies, MDPI, vol. 15(13), pages 1-16, June.
    4. Colmenar-Santos, Antonio & Folch-Calvo, Martin & Rosales-Asensio, Enrique & Borge-Diez, David, 2016. "The geothermal potential in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 865-886.
    5. Cristina Sáez Blázquez & Ignacio Martín Nieto & Arturo Farfán Martín & Diego González-Aguilera & Pedro Carrasco García, 2019. "Comparative Analysis of Different Methodologies Used to Estimate the Ground Thermal Conductivity in Low Enthalpy Geothermal Systems," Energies, MDPI, vol. 12(9), pages 1-14, May.
    6. Ignacio Martín Nieto & Pedro Carrasco García & Cristina Sáez Blázquez & Arturo Farfán Martín & Diego González-Aguilera & Javier Carrasco García, 2020. "Geophysical Prospecting for Geothermal Resources in the South of the Duero Basin (Spain)," Energies, MDPI, vol. 13(20), pages 1-22, October.
    7. Chen, Jiliang & Jiang, Fangming, 2015. "Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy," Renewable Energy, Elsevier, vol. 74(C), pages 37-48.
    8. Trumpy, Eugenio & Bertani, Ruggero & Manzella, Adele & Sander, Marietta, 2015. "The web-oriented framework of the world geothermal production database: A business intelligence platform for wide data distribution and analysis," Renewable Energy, Elsevier, vol. 74(C), pages 379-389.
    9. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    10. Zhao, Yangsheng & Feng, Zijun & Feng, Zengchao & Yang, Dong & Liang, Weiguo, 2015. "THM (Thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000–7000 M," Energy, Elsevier, vol. 82(C), pages 193-205.
    11. Ashish Gulagi & Dmitrii Bogdanov & Christian Breyer, 2017. "A Cost Optimized Fully Sustainable Power System for Southeast Asia and the Pacific Rim," Energies, MDPI, vol. 10(5), pages 1-25, April.
    12. Aghahosseini, Arman & Breyer, Christian, 2020. "From hot rock to useful energy: A global estimate of enhanced geothermal systems potential," Applied Energy, Elsevier, vol. 279(C).
    13. Arman Aghahosseini & Dmitrii Bogdanov & Christian Breyer, 2017. "A Techno-Economic Study of an Entirely Renewable Energy-Based Power Supply for North America for 2030 Conditions," Energies, MDPI, vol. 10(8), pages 1-28, August.
    14. Sun, Zhi-xue & Zhang, Xu & Xu, Yi & Yao, Jun & Wang, Hao-xuan & Lv, Shuhuan & Sun, Zhi-lei & Huang, Yong & Cai, Ming-yu & Huang, Xiaoxue, 2017. "Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model," Energy, Elsevier, vol. 120(C), pages 20-33.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua Dong & Kun Yang & Guoqing Bai, 2022. "Evaluation of TPGU using entropy - improved TOPSIS - GRA method in China," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-24, January.
    2. Gürbüz, Emine Yağız & Güler, Onur Vahip & Keçebaş, Ali, 2022. "Environmental impact assessment of a real geothermal driven power plant with two-stage ORC using enhanced exergo-environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1110-1123.
    3. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    4. Trumpy, Eugenio & Bertani, Ruggero & Manzella, Adele & Sander, Marietta, 2015. "The web-oriented framework of the world geothermal production database: A business intelligence platform for wide data distribution and analysis," Renewable Energy, Elsevier, vol. 74(C), pages 379-389.
    5. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    6. Gao, Cheng-kang & Na, Hong-ming & Song, Kai-hui & Dyer, Noel & Tian, Fan & Xu, Qing-jiang & Xing, Yu-hong, 2019. "Environmental impact analysis of power generation from biomass and wind farms in different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 307-317.
    7. Liu, Qiang & Shang, Linlin & Duan, Yuanyuan, 2016. "Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources," Applied Energy, Elsevier, vol. 162(C), pages 149-162.
    8. Colmenar-Santos, Antonio & Folch-Calvo, Martin & Rosales-Asensio, Enrique & Borge-Diez, David, 2016. "The geothermal potential in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 865-886.
    9. Kheiralipour, Kamran & Khoobbakht, Mohammad & Karimi, Mahmoud, 2024. "Effect of biodiesel on environmental impacts of diesel mechanical power generation by life cycle assessment," Energy, Elsevier, vol. 289(C).
    10. Li, Jingyi & Gallego-Schmid, Alejandro & Stamford, Laurence, 2024. "Integrated sustainability assessment of repurposing onshore abandoned wells for geothermal power generation," Applied Energy, Elsevier, vol. 359(C).
    11. Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco & Bonciani, Roberto, 2020. "A rigorous simulation model of geothermal power plants for emission control," Applied Energy, Elsevier, vol. 263(C).
    12. Cho, Sangmin & Kim, Jinsoo & Heo, Eunnyeong, 2015. "Application of fuzzy analytic hierarchy process to select the optimal heating facility for Korean horticulture and stockbreeding sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1075-1083.
    13. Liu, Wen & Ramirez, Andrea, 2017. "State of the art review of the environmental assessment and risks of underground geo-energy resources exploitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 628-644.
    14. Michał Kaczmarczyk & Barbara Tomaszewska & Agnieszka Operacz, 2020. "Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System," Energies, MDPI, vol. 13(10), pages 1-18, May.
    15. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    16. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    17. Alessandro Franco & Maurizio Vaccaro, 2020. "Sustainable Sizing of Geothermal Power Plants: Appropriate Potential Assessment Methods," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
    18. Rivera Diaz, Alexandre & Kaya, Eylem & Zarrouk, Sadiq J., 2016. "Reinjection in geothermal fields − A worldwide review update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 105-162.
    19. Dawo, Fabian & Fleischmann, Jonas & Kaufmann, Florian & Schifflechner, Christopher & Eyerer, Sebastian & Wieland, Christoph & Spliethoff, Hartmut, 2021. "R1224yd(Z), R1233zd(E) and R1336mzz(Z) as replacements for R245fa: Experimental performance, interaction with lubricants and environmental impact," Applied Energy, Elsevier, vol. 288(C).
    20. Sławomir Kurpaska & Mirosław Janowski & Maciej Gliniak & Anna Krakowiak-Bal & Urszula Ziemiańczyk, 2021. "The Use of Geothermal Energy to Heating Crops under Cover: A Case Study of Poland," Energies, MDPI, vol. 14(9), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:66:y:2014:i:c:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.