IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp20-31.html
   My bibliography  Save this article

Environmental performance of a geothermal power plant using a hydrothermal resource in the Southern German Molasse Basin

Author

Listed:
  • Menberg, Kathrin
  • Heberle, Florian
  • Bott, Christoph
  • Brüggemann, Dieter
  • Bayer, Peter

Abstract

Every technology and anthropogenic activity affects the environment. This even applies to renewable, green energy forms, such as geothermal energy, which are often labelled as being climate neutral. Yet, a second glance reveals that this is not the case, as the construction, operation and decommissioning of geothermal power plants implies a consumption of materials and energy. Life Cycle Assessments (LCA) help to identify and quantify these impacts in order to ensure realistic comparability at different levels. Despite a growing number of surveys, however, either not all influencing parameters are explicitly considered, or the studies are only theoretical and based on generic data. Therefore, this study explores the binary plant of Kirchstockach located in Southern Germany in a comprehensive LCA. Corresponding scenarios identify leakages of used refrigerants and allocations of energy consumption during construction and operation as relevant impact factors. Results show that using refrigerants with low global warming potential ensures minimal effects even in case of larger losses. In addition, resource-saving drilling with electricity instead of diesel can effectively offset energy needs by later electricity production. In contrast, auxiliary energy usage from an electricity grid dominated by fossil sources has highly negative effects on the environmental performance.

Suggested Citation

  • Menberg, Kathrin & Heberle, Florian & Bott, Christoph & Brüggemann, Dieter & Bayer, Peter, 2021. "Environmental performance of a geothermal power plant using a hydrothermal resource in the Southern German Molasse Basin," Renewable Energy, Elsevier, vol. 167(C), pages 20-31.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:20-31
    DOI: 10.1016/j.renene.2020.11.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120317699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lorenzo Tosti & Nicola Ferrara & Riccardo Basosi & Maria Laura Parisi, 2020. "Complete Data Inventory of a Geothermal Power Plant for Robust Cradle-to-Grave Life Cycle Assessment Results," Energies, MDPI, vol. 13(11), pages 1-19, June.
    2. Frick, Stephanie & Kaltschmitt, Martin & Schröder, Gerd, 2010. "Life cycle assessment of geothermal binary power plants using enhanced low-temperature reservoirs," Energy, Elsevier, vol. 35(5), pages 2281-2294.
    3. Guzović, Z. & Lončar, D. & Ferdelji, N., 2010. "Possibilities of electricity generation in the Republic of Croatia by means of geothermal energy," Energy, Elsevier, vol. 35(8), pages 3429-3440.
    4. Gerber, Léda & Maréchal, François, 2012. "Environomic optimal configurations of geothermal energy conversion systems: Application to the future construction of Enhanced Geothermal Systems in Switzerland," Energy, Elsevier, vol. 45(1), pages 908-923.
    5. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    6. Palmer-Wilson, K. & Banks, J. & Walsh, W. & Robertson, B., 2018. "Sedimentary basin geothermal favourability mapping and power generation assessments," Renewable Energy, Elsevier, vol. 127(C), pages 1087-1100.
    7. Yang, Jingye & Ye, Zhenhong & Yu, Binbin & Ouyang, Hongsheng & Chen, Jiangping, 2019. "Simultaneous experimental comparison of low-GWP refrigerants as drop-in replacements to R245fa for Organic Rankine cycle application: R1234ze(Z), R1233zd(E), and R1336mzz(E)," Energy, Elsevier, vol. 173(C), pages 721-731.
    8. Welzl, Matthias & Heberle, Florian & Brüggemann, Dieter, 2020. "Experimental evaluation of nucleate pool boiling heat transfer correlations for R245fa and R1233zd(E) in ORC applications," Renewable Energy, Elsevier, vol. 147(P3), pages 2855-2864.
    9. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    10. Tim Eller & Florian Heberle & Dieter Brüggemann, 2019. "Transient Simulation of Geothermal Combined Heat and Power Generation for a Resilient Energetic and Economic Evaluation," Energies, MDPI, vol. 12(5), pages 1-16, March.
    11. Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
    12. Buonocore, Elvira & Vanoli, Laura & Carotenuto, Alberto & Ulgiati, Sergio, 2015. "Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy," Energy, Elsevier, vol. 86(C), pages 476-487.
    13. Bayer, Peter & Rybach, Ladislaus & Blum, Philipp & Brauchler, Ralf, 2013. "Review on life cycle environmental effects of geothermal power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 446-463.
    14. Saner, Dominik & Juraske, Ronnie & Kübert, Markus & Blum, Philipp & Hellweg, Stefanie & Bayer, Peter, 2010. "Is it only CO2 that matters? A life cycle perspective on shallow geothermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1798-1813, September.
    15. Quirin Schiermeier & Jeff Tollefson & Tony Scully & Alexandra Witze & Oliver Morton, 2008. "Energy alternatives: Electricity without carbon," Nature, Nature, vol. 454(7206), pages 816-823, August.
    16. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    17. Gibon, Thomas & Arvesen, Anders & Hertwich, Edgar G., 2017. "Life cycle assessment demonstrates environmental co-benefits and trade-offs of low-carbon electricity supply options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1283-1290.
    18. Lacirignola, Martino & Blanc, Isabelle, 2013. "Environmental analysis of practical design options for enhanced geothermal systems (EGS) through life-cycle assessment," Renewable Energy, Elsevier, vol. 50(C), pages 901-914.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Violeta Motuzienė & Kęstutis Čiuprinskas & Artur Rogoža & Vilūnė Lapinskienė, 2022. "A Review of the Life Cycle Analysis Results for Different Energy Conversion Technologies," Energies, MDPI, vol. 15(22), pages 1-26, November.
    2. Kaczmarczyk, Michał & Mukti, Mentari & Ghaffour, Noreddine & Soukane, Sofiane & Bundschuh, Jochen & Tomaszewska, Barbara, 2024. "Renewable energy-driven membrane distillation in the context of life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Gürbüz, Emine Yağız & Güler, Onur Vahip & Keçebaş, Ali, 2022. "Environmental impact assessment of a real geothermal driven power plant with two-stage ORC using enhanced exergo-environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1110-1123.
    4. Irl, Matthäus & Schifflechner, Christopher & Wieland, Christoph & Spliethoff, Hartmut, 2023. "Advanced monitoring of geothermal Organic Rankine Cycles," Renewable Energy, Elsevier, vol. 217(C).
    5. Menberg, Kathrin & Heberle, Florian & Uhrmann, Hannah & Bott, Christoph & Grünäugl, Sebastian & Brüggemann, Dieter & Bayer, Peter, 2023. "Environmental impact of cogeneration in binary geothermal plants," Renewable Energy, Elsevier, vol. 218(C).
    6. Mahmoud G. Hemeida & Ashraf M. Hemeida & Tomonobu Senjyu & Dina Osheba, 2022. "Renewable Energy Resources Technologies and Life Cycle Assessment: Review," Energies, MDPI, vol. 15(24), pages 1-36, December.
    7. Solano-Olivares, K. & Santoyo, E. & Santoyo-Castelazo, E., 2024. "Integrated sustainability assessment framework for geothermal energy technologies: A literature review and a new proposal of sustainability indicators for Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Giambattista Guidi & Anna Carmela Violante & Simona De Iuliis, 2023. "Environmental Impact of Electricity Generation Technologies: A Comparison between Conventional, Nuclear, and Renewable Technologies," Energies, MDPI, vol. 16(23), pages 1-33, November.
    9. Maria Vittoria Gargiulo & Alexander Garcia & Andrea Paulillo & Ortensia Amoroso & Ernesto Salzano & Paolo Capuano, 2021. "An Integrated Approach to Risk and Impacts of Geo-Resources Exploration and Exploitation," Energies, MDPI, vol. 14(14), pages 1-31, July.
    10. Schifflechner, Christopher & Kuhnert, Lara & Irrgang, Ludwig & Dawo, Fabian & Kaufmann, Florian & Wieland, Christoph & Spliethoff, Hartmut, 2023. "Geothermal trigeneration systems with Organic Rankine Cycles: Evaluation of different plant configurations considering part load behaviour," Renewable Energy, Elsevier, vol. 207(C), pages 218-233.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gkousis, Spiros & Welkenhuysen, Kris & Compernolle, Tine, 2022. "Deep geothermal energy extraction, a review on environmental hotspots with focus on geo-technical site conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Maria Milousi & Athanasios Pappas & Andreas P. Vouros & Giouli Mihalakakou & Manolis Souliotis & Spiros Papaefthimiou, 2022. "Evaluating the Technical and Environmental Capabilities of Geothermal Systems through Life Cycle Assessment," Energies, MDPI, vol. 15(15), pages 1-30, August.
    3. Menberg, Kathrin & Heberle, Florian & Uhrmann, Hannah & Bott, Christoph & Grünäugl, Sebastian & Brüggemann, Dieter & Bayer, Peter, 2023. "Environmental impact of cogeneration in binary geothermal plants," Renewable Energy, Elsevier, vol. 218(C).
    4. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    5. Buonocore, Elvira & Vanoli, Laura & Carotenuto, Alberto & Ulgiati, Sergio, 2015. "Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy," Energy, Elsevier, vol. 86(C), pages 476-487.
    6. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    7. Bayer, Peter & Rybach, Ladislaus & Blum, Philipp & Brauchler, Ralf, 2013. "Review on life cycle environmental effects of geothermal power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 446-463.
    8. Solano-Olivares, K. & Santoyo, E. & Santoyo-Castelazo, E., 2024. "Integrated sustainability assessment framework for geothermal energy technologies: A literature review and a new proposal of sustainability indicators for Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    10. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    11. Lorenzo Bruscoli & Daniele Fiaschi & Giampaolo Manfrida & Duccio Tempesti, 2015. "Improving the Environmental Sustainability of Flash Geothermal Power Plants—A Case Study," Sustainability, MDPI, vol. 7(11), pages 1-22, November.
    12. Lorenzo Tosti & Nicola Ferrara & Riccardo Basosi & Maria Laura Parisi, 2020. "Complete Data Inventory of a Geothermal Power Plant for Robust Cradle-to-Grave Life Cycle Assessment Results," Energies, MDPI, vol. 13(11), pages 1-19, June.
    13. Zheng, Shuxian & Zhou, Xuanru & Tan, Zhanglu & Liu, Chan & Hu, Han & Yuan, Hui & Peng, Shengnan & Cai, Xiaomei, 2023. "Assessment of the global energy transition: Based on trade embodied energy analysis," Energy, Elsevier, vol. 273(C).
    14. Sigurjónsson, Hafþór Ægir & Cook, David & Davíðsdóttir, Brynhildur & Bogason, Sigurður G., 2021. "A life-cycle analysis of deep enhanced geothermal systems – The case studies of Reykjanes, Iceland and Vendenheim, France," Renewable Energy, Elsevier, vol. 177(C), pages 1076-1086.
    15. Maria Laura Parisi & Melanie Douziech & Lorenzo Tosti & Paula Pérez-López & Barbara Mendecka & Sergio Ulgiati & Daniele Fiaschi & Giampaolo Manfrida & Isabelle Blanc, 2020. "Definition of LCA Guidelines in the Geothermal Sector to Enhance Result Comparability," Energies, MDPI, vol. 13(14), pages 1-18, July.
    16. Pan, Shu-Yuan & Gao, Mengyao & Shah, Kinjal J. & Zheng, Jianming & Pei, Si-Lu & Chiang, Pen-Chi, 2019. "Establishment of enhanced geothermal energy utilization plans: Barriers and strategies," Renewable Energy, Elsevier, vol. 132(C), pages 19-32.
    17. Briones Hidrovo, Andrei & Uche, Javier & Martínez-Gracia, Amaya, 2017. "Accounting for GHG net reservoir emissions of hydropower in Ecuador," Renewable Energy, Elsevier, vol. 112(C), pages 209-221.
    18. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    19. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    20. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:20-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.