IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v61y2014icp102-108.html
   My bibliography  Save this article

BECCS in South Korea—Analyzing the negative emissions potential of bioenergy as a mitigation tool

Author

Listed:
  • Kraxner, Florian
  • Aoki, Kentaro
  • Leduc, Sylvain
  • Kindermann, Georg
  • Fuss, Sabine
  • Yang, Jue
  • Yamagata, Yoshiki
  • Tak, Kwang-Il
  • Obersteiner, Michael

Abstract

The objective of this study is to analyze the in situ BECCS capacity for green-field bioenergy plants in South Korea. The technical assessment is used to support a policy discussion on the suitability of BECCS as a mitigation tool. We examined the technical potential of bioenergy production from domestic forest biomass. In a first step, the biophysical global forestry model (G4M) was applied to estimate biomass availability. In a second step, the results from G4M were used as input data to the engineering model BeWhere, which optimizes scaling and location of combined heat and power plants (CHP). The geographically explicit locations and capacities obtained for forest-based bioenergy plants were then overlaid with a geological suitability map for carbon storage. From this, a theoretical potential for in situ BECCS was derived. Results indicate that, given the abundant forest cover in South Korea, there is substantial potential for bioenergy production, which could contribute not only to substituting emissions from fossil fuels but also to meeting the targets of the country's commitments under any climate change mitigation agreement. However, there seems to be only limited potential for direct in situ carbon storage in South Korea.

Suggested Citation

  • Kraxner, Florian & Aoki, Kentaro & Leduc, Sylvain & Kindermann, Georg & Fuss, Sabine & Yang, Jue & Yamagata, Yoshiki & Tak, Kwang-Il & Obersteiner, Michael, 2014. "BECCS in South Korea—Analyzing the negative emissions potential of bioenergy as a mitigation tool," Renewable Energy, Elsevier, vol. 61(C), pages 102-108.
  • Handle: RePEc:eee:renene:v:61:y:2014:i:c:p:102-108
    DOI: 10.1016/j.renene.2012.09.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112006994
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.09.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derek Lemoine & Sabine Fuss & Jana Szolgayova & Michael Obersteiner & Daniel Kammen, 2012. "The influence of negative emission technologies and technology policies on the optimal climate mitigation portfolio," Climatic Change, Springer, vol. 113(2), pages 141-162, July.
    2. Fuss, Sabine & Szolgayová, Jana & Khabarov, Nikolay & Obersteiner, Michael, 2012. "Renewables and climate change mitigation: Irreversible energy investment under uncertainty and portfolio effects," Energy Policy, Elsevier, vol. 40(C), pages 59-68.
    3. Iea, 2012. "A Policy Strategy for Carbon Capture and Storage," IEA Energy Papers 2012/4, OECD Publishing.
    4. Börjesson, Pål & Gustavsson, Leif, 1996. "Regional production and utilization of biomass in Sweden," Energy, Elsevier, vol. 21(9), pages 747-764.
    5. Jun, Sooyoung & Lee, Seungmoon & Park, Jin-Won & Jeong, Suk-Jae & Shin, Ho-Chul, 2010. "The assessment of renewable energy planning on CO2 abatement in South Korea," Renewable Energy, Elsevier, vol. 35(2), pages 471-477.
    6. Kim, Hoseok & Shin, Eui-soon & Chung, Woo-jin, 2011. "Energy demand and supply, energy policies, and energy security in the Republic of Korea," Energy Policy, Elsevier, vol. 39(11), pages 6882-6897.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baker, J.S. & Wade, C.M. & Sohngen, B.L. & Ohrel, S. & Fawcett, A.A., 2019. "Potential complementarity between forest carbon sequestration incentives and biomass energy expansion," Energy Policy, Elsevier, vol. 126(C), pages 391-401.
    2. Mesfun, Sennai & Leduc, Sylvain & Patrizio, Piera & Wetterlund, Elisabeth & Mendoza-Ponce, Alma & Lammens, Tijs & Staritsky, Igor & Elbersen, Berien & Lundgren, Joakim & Kraxner, Florian, 2018. "Spatio-temporal assessment of integrating intermittent electricity in the EU and Western Balkans power sector under ambitious CO2 emission policies," Energy, Elsevier, vol. 164(C), pages 676-693.
    3. Yuwono, Bintang & Yowargana, Ping & Kranzl, Lukas & Haas, Reinhard & Dewi, Retno Gumilang & Siagian, Ucok Welo Risma & Kraxner, Florian, 2023. "Incorporating grid expansion in an energy system optimisation model - A case study for Indonesia," OSF Preprints aw4bd, Center for Open Science.
    4. Dinca, Cristian & Slavu, Nela & Cormoş, Călin-Cristian & Badea, Adrian, 2018. "CO2 capture from syngas generated by a biomass gasification power plant with chemical absorption process," Energy, Elsevier, vol. 149(C), pages 925-936.
    5. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Rewarding of extra-avoided GHG emissions in thermochemical biorefineries incorporating Bio-CCS," Applied Energy, Elsevier, vol. 157(C), pages 255-266.
    6. Withey, Patrick & Johnston, Craig & Guo, Jinggang, 2019. "Quantifying the global warming potential of carbon dioxide emissions from bioenergy with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    8. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    9. Pettersson, Karin & Wetterlund, Elisabeth & Athanassiadis, Dimitris & Lundmark, Robert & Ehn, Christian & Lundgren, Joakim & Berglin, Niklas, 2015. "Integration of next-generation biofuel production in the Swedish forest industry – A geographically explicit approach," Applied Energy, Elsevier, vol. 154(C), pages 317-332.
    10. Mohd Idris, Muhammad Nurariffudin & Leduc, Sylvain & Yowargana, Ping & Hashim, Haslenda & Kraxner, Florian, 2021. "Spatio-temporal assessment of the impact of intensive palm oil-based bioenergy deployment on cross-sectoral energy decarbonization," Applied Energy, Elsevier, vol. 285(C).
    11. Bui, Mai & Fajardy, Mathilde & Mac Dowell, Niall, 2017. "Bio-Energy with CCS (BECCS) performance evaluation: Efficiency enhancement and emissions reduction," Applied Energy, Elsevier, vol. 195(C), pages 289-302.
    12. Richard Ochieng & Alemayehu Gebremedhin & Shiplu Sarker, 2022. "Integration of Waste to Bioenergy Conversion Systems: A Critical Review," Energies, MDPI, vol. 15(7), pages 1-22, April.
    13. Jana, Kuntal & De, Sudipta, 2014. "Biomass integrated gasification combined cogeneration with or without CO2 capture – A comparative thermodynamic study," Renewable Energy, Elsevier, vol. 72(C), pages 243-252.
    14. Sugiyama, Masahiro & Fujimori, Shinichiro & Wada, Kenichi & Endo, Seiya & Fujii, Yasumasa & Komiyama, Ryoichi & Kato, Etsushi & Kurosawa, Atsushi & Matsuo, Yuhji & Oshiro, Ken & Sano, Fuminori & Shira, 2019. "Japan's long-term climate mitigation policy: Multi-model assessment and sectoral challenges," Energy, Elsevier, vol. 167(C), pages 1120-1131.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Seolhee & Kim, Jiyong, 2015. "Feasibility and impact analysis of a renewable energy source (RES)-based energy system in Korea," Energy, Elsevier, vol. 85(C), pages 317-328.
    2. Dominique Thronicker & Ian Lange, 2014. "Determining the Success of Carbon Capture and Storage Projects," Working Papers 2014-14, Colorado School of Mines, Division of Economics and Business.
    3. Lee, Juyong & Cho, Youngsang, 2020. "Estimation of the usage fee for peer-to-peer electricity trading platform: The case of South Korea," Energy Policy, Elsevier, vol. 136(C).
    4. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    5. Stefan Niederhafner, 2014. "The Korean Energy and GHG Target Management System: An Alternative to Kyoto-Protocol Emissions Trading Systems?," TEMEP Discussion Papers 2014118, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Sep 2014.
    6. Youngho CHANG & Yanfei LI, 2014. "Non-renewable Resources in Asian Economies: Perspective of Availability, Applicability Acceptability, and Affordability," Working Papers DP-2014-04, Economic Research Institute for ASEAN and East Asia (ERIA).
    7. Kale, Rajesh V. & Pohekar, Sanjay D., 2014. "Electricity demand and supply scenarios for Maharashtra (India) for 2030: An application of long range energy alternatives planning," Energy Policy, Elsevier, vol. 72(C), pages 1-13.
    8. Zhang, Xinhua & Yang, Hongming & Yu, Qian & Qiu, Jing & Zhang, Yongxi, 2018. "Analysis of carbon-abatement investment for thermal power market in carbon-dispatching mode and policy recommendations," Energy, Elsevier, vol. 149(C), pages 954-966.
    9. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    10. Hach, Daniel & Chyong, Chi Kong & Spinler, Stefan, 2016. "Capacity market design options: A dynamic capacity investment model and a GB case study," European Journal of Operational Research, Elsevier, vol. 249(2), pages 691-705.
    11. Thanh Tu Tran & Shinichiro Fujimori & Toshihiko Masui, 2016. "Realizing the Intended Nationally Determined Contribution: The Role of Renewable Energies in Vietnam," Energies, MDPI, vol. 9(8), pages 1-17, July.
    12. Duk Joon Park & Ki Hyung Yu & Yong Sang Yoon & Kee Han Kim & Sun Sook Kim, 2015. "Analysis of a Building Energy Efficiency Certification System in Korea," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    13. Ahn, Joongha & Woo, JongRoul & Lee, Jongsu, 2015. "Optimal allocation of energy sources for sustainable development in South Korea: Focus on the electric power generation industry," Energy Policy, Elsevier, vol. 78(C), pages 78-90.
    14. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2014. "Decision-support tool for assessing future nuclear reactor generation portfolios," Energy Economics, Elsevier, vol. 44(C), pages 99-112.
    15. Chen, Xia & Fu, Qiang & Chang, Chun-Ping, 2021. "What are the shocks of climate change on clean energy investment: A diversified exploration," Energy Economics, Elsevier, vol. 95(C).
    16. Sarah Hafner & Olivia James & Aled Jones, 2019. "A Scoping Review of Barriers to Investment in Climate Change Solutions," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    17. Gustavsson, Leif & Borjesson, Pal, 1998. "CO2 mitigation cost: Bioenergy systems and natural gas systems with decarbonization," Energy Policy, Elsevier, vol. 26(9), pages 699-713, August.
    18. Gustavsson, Leif & Karlsson, Asa, 2002. "A system perspective on the heating of detached houses," Energy Policy, Elsevier, vol. 30(7), pages 553-574, June.
    19. Teresa Romano & Tim Mennel & Sara Scatasta, 2017. "Comparing feed-in tariffs and renewable obligation certificates: the case of repowering wind farms," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 44(3), pages 291-314, September.
    20. Almansoori, Ali, 2014. "The influence of South Korean energy policy on OPEC oil exports," Energy Policy, Elsevier, vol. 67(C), pages 572-582.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:61:y:2014:i:c:p:102-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.