IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v125y2018icp87-99.html
   My bibliography  Save this article

Optimization of H-Rotor Darrieus turbines' mutual interaction in staggered arrangements

Author

Listed:
  • Shaaban, S.
  • Albatal, A.
  • Mohamed, M.H.

Abstract

Wind farms with staggered aligned wind turbines have been considered for decades to minimize the effect of turbine wake on the aerodynamic performance of its subsequent turbines. Given the numerous advantages of the Vertical Axis Wind Turbines (VAWTs), it is significant to study the feasibility of implementing them in large-scale wind farms. Therefore, the present work numerically investigates the mutual interaction between H-rotor Darrieus turbines in staggered wind farms and standalone clusters. Different layouts and configurations were thoroughly investigated by solving the Unsteady Reynolds Averaged Navier–Stokes (URANS) equations under different geometric and operating conditions. The objective of the present work is to maximize the power output of the VAWTs' wind farms while reducing the required land area. This objective was achieved by defining the spacing between turbines that reduces the wake losses and minimizes the mutual interaction between the VAWTs in staggered wind farms. At this spacing, the power coefficient of the individual turbines is closer to that of an isolated turbine. Moreover, the spacing that optimizes the power density of standalone clusters was estimated.

Suggested Citation

  • Shaaban, S. & Albatal, A. & Mohamed, M.H., 2018. "Optimization of H-Rotor Darrieus turbines' mutual interaction in staggered arrangements," Renewable Energy, Elsevier, vol. 125(C), pages 87-99.
  • Handle: RePEc:eee:renene:v:125:y:2018:i:c:p:87-99
    DOI: 10.1016/j.renene.2018.02.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118302386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.02.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Wenwen & Özcan, Ender & John, Robert, 2017. "Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation," Renewable Energy, Elsevier, vol. 105(C), pages 473-482.
    2. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    3. Zanforlin, Stefania & Nishino, Takafumi, 2016. "Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines," Renewable Energy, Elsevier, vol. 99(C), pages 1213-1226.
    4. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    5. Li, Chao & Zhu, Songye & Xu, You-lin & Xiao, Yiqing, 2013. "2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow," Renewable Energy, Elsevier, vol. 51(C), pages 317-330.
    6. Bansal, Jagdish Chand & Farswan, Pushpa, 2017. "Wind farm layout using biogeography based optimization," Renewable Energy, Elsevier, vol. 107(C), pages 386-402.
    7. Raciti Castelli, Marco & Englaro, Alessandro & Benini, Ernesto, 2011. "The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD," Energy, Elsevier, vol. 36(8), pages 4919-4934.
    8. Kiranoudis, C.T. & Maroulis, Z.B., 1997. "Effective short-cut modelling of wind park efficiency," Renewable Energy, Elsevier, vol. 11(4), pages 439-457.
    9. Danao, Louis Angelo & Edwards, Jonathan & Eboibi, Okeoghene & Howell, Robert, 2014. "A numerical investigation into the influence of unsteady wind on the performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 116(C), pages 111-124.
    10. Aslam Bhutta, Muhammad Mahmood & Hayat, Nasir & Farooq, Ahmed Uzair & Ali, Zain & Jamil, Sh. Rehan & Hussain, Zahid, 2012. "Vertical axis wind turbine – A review of various configurations and design techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1926-1939.
    11. Mohamed, M.H., 2012. "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, Elsevier, vol. 47(1), pages 522-530.
    12. Almohammadi, K.M. & Ingham, D.B. & Ma, L. & Pourkashan, M., 2013. "Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine," Energy, Elsevier, vol. 58(C), pages 483-493.
    13. Subramanian, Abhishek & Yogesh, S. Arun & Sivanandan, Hrishikesh & Giri, Abhijit & Vasudevan, Madhavan & Mugundhan, Vivek & Velamati, Ratna Kishore, 2017. "Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model," Energy, Elsevier, vol. 133(C), pages 179-190.
    14. Mohamed, M.H., 2014. "Aero-acoustics noise evaluation of H-rotor Darrieus wind turbines," Energy, Elsevier, vol. 65(C), pages 596-604.
    15. Wang, Longyan & Tan, Andy C.C. & Cholette, Michael E. & Gu, Yuantong, 2017. "Optimization of wind farm layout with complex land divisions," Renewable Energy, Elsevier, vol. 105(C), pages 30-40.
    16. Xiao, Qing & Liu, Wendi & Incecik, Atilla, 2013. "Flow control for VATT by fixed and oscillating flap," Renewable Energy, Elsevier, vol. 51(C), pages 141-152.
    17. MirHassani, S.A. & Yarahmadi, A., 2017. "Wind farm layout optimization under uncertainty," Renewable Energy, Elsevier, vol. 107(C), pages 288-297.
    18. Islam, Mazharul & Ting, David S.-K. & Fartaj, Amir, 2008. "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1087-1109, May.
    19. Parada, Leandro & Herrera, Carlos & Flores, Paulo & Parada, Victor, 2017. "Wind farm layout optimization using a Gaussian-based wake model," Renewable Energy, Elsevier, vol. 107(C), pages 531-541.
    20. Raciti Castelli, Marco & Dal Monte, Andrea & Quaresimin, Marino & Benini, Ernesto, 2013. "Numerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformation," Renewable Energy, Elsevier, vol. 51(C), pages 101-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marzec, Łukasz & Buliński, Zbigniew & Krysiński, Tomasz & Tumidajski, Jakub, 2023. "Structural optimisation of H-Rotor wind turbine blade based on one-way Fluid Structure Interaction approach," Renewable Energy, Elsevier, vol. 216(C).
    2. Jiang, Yichen & Liu, Shijie & Zao, Peidong & Yu, Yanwei & Zou, Li & Liu, Liqin & Li, Jiawen, 2022. "Experimental evaluation of a tree-shaped quad-rotor wind turbine on power output controllability and survival shutdown capability," Applied Energy, Elsevier, vol. 309(C).
    3. Kuang, Limin & Katsuchi, Hiroshi & Zhou, Dai & Chen, Yaoran & Han, Zhaolong & Zhang, Kai & Wang, Jiaqi & Bao, Yan & Cao, Yong & Liu, Yijie, 2023. "Strategy for mitigating wake interference between offshore vertical-axis wind turbines: Evaluation of vertically staggered arrangement," Applied Energy, Elsevier, vol. 351(C).
    4. Tian, Wenlong & Ni, Xiwen & Li, Bo & Yang, Guangyong & Mao, Zhaoyong, 2023. "Improving the efficiency of Darrieus turbines through a gear-like turbine layout," Energy, Elsevier, vol. 267(C).
    5. Ji Hao Zhang & Fue-Sang Lien & Eugene Yee, 2022. "Investigations of Vertical-Axis Wind-Turbine Group Synergy Using an Actuator Line Model," Energies, MDPI, vol. 15(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    2. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Atlaschian, Omid & Metzger, M., 2021. "Numerical model of vertical axis wind turbine performance in realistic gusty wind conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 211-223.
    4. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.
    5. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    6. Wang, Ying & Shen, Sheng & Li, Gaohui & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes," Renewable Energy, Elsevier, vol. 126(C), pages 801-818.
    7. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao & Hu, Zuohuan, 2015. "A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1709-1720.
    8. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    9. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    10. Li, Chao & Xiao, Yiqing & Xu, You-lin & Peng, Yi-xin & Hu, Gang & Zhu, Songye, 2018. "Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations," Applied Energy, Elsevier, vol. 212(C), pages 1107-1125.
    11. Chen, Jian & Chen, Liu & Xu, Hongtao & Yang, Hongxing & Ye, Changwen & Liu, Di, 2016. "Performance improvement of a vertical axis wind turbine by comprehensive assessment of an airfoil family," Energy, Elsevier, vol. 114(C), pages 318-331.
    12. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    13. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    14. Peng, H.Y. & Han, Z.D. & Liu, H.J. & Lin, K. & Lam, H.F., 2020. "Assessment and optimization of the power performance of twin vertical axis wind turbines via numerical simulations," Renewable Energy, Elsevier, vol. 147(P1), pages 43-54.
    15. Peng, H.Y. & Liu, M.N. & Liu, H.J. & Lin, K., 2022. "Optimization of twin vertical axis wind turbines through large eddy simulations and Taguchi method," Energy, Elsevier, vol. 240(C).
    16. Samuel Mitchell & Iheanyichukwu Ogbonna & Konstantin Volkov, 2021. "Improvement of Self-Starting Capabilities of Vertical Axis Wind Turbines with New Design of Turbine Blades," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    17. Chen, Jian & Pan, Xiong & Wang, Canxing & Hu, Guojun & Xu, Hongtao & Liu, Pengwei, 2019. "Airfoil parameterization evaluation based on a modified PARASEC method for a H-Darrious rotor," Energy, Elsevier, vol. 187(C).
    18. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    19. Bangga, Galih & Dessoky, Amgad & Wu, Zhenlong & Rogowski, Krzysztof & Hansen, Martin O.L., 2020. "Accuracy and consistency of CFD and engineering models for simulating vertical axis wind turbine loads," Energy, Elsevier, vol. 206(C).
    20. Almohammadi, K.M. & Ingham, D.B. & Ma, L. & Pourkashan, M., 2013. "Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine," Energy, Elsevier, vol. 58(C), pages 483-493.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:125:y:2018:i:c:p:87-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.