IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp676-691.html
   My bibliography  Save this article

Modeling offshore wind installation costs on the U.S. Outer Continental Shelf

Author

Listed:
  • Kaiser, Mark J.
  • Snyder, Brian F.

Abstract

Onshore wind power is cost competitive with conventional sources of electricity, but offshore wind power is more expensive, in part due to the added costs of offshore installation. Estimating the installation cost of future projects in the U.S. is an important component of capital cost and provides guidance on expected decommissioning expenditures. The purpose of this paper is to develop a model of the installation costs of offshore wind projects on the U.S. Outer Continental Shelf. Offshore wind farms are characterized in terms of four primary variables – nameplate capacity, turbine capacity, distance to port and distance to shore – which are employed in empirical models of installation. A bottom-up approach is used based on current technologies and expected market conditions for the period 2012–2017 to estimate stage-specific installation costs. The installation costs at three planned U.S. wind farms (Cape Wind, Bluewater Delaware, and Coastal Point Galveston) are estimated and range from $130,000 to $370,000 per MW. Sensitivity analyses are performed to identify the variables most responsible for uncertainty and risk. Cost is relatively insensitive to distance to port, but unit costs decline significantly with larger turbine capacity, and increase with the time required for installation. The limitations of the analysis are described.

Suggested Citation

  • Kaiser, Mark J. & Snyder, Brian F., 2013. "Modeling offshore wind installation costs on the U.S. Outer Continental Shelf," Renewable Energy, Elsevier, vol. 50(C), pages 676-691.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:676-691
    DOI: 10.1016/j.renene.2012.07.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112004776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.07.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Alegría, Iñigo Martínez & Martín, Jose Luis & Kortabarria, Iñigo & Andreu, Jon & Ereño, Pedro Ibañez, 2009. "Transmission alternatives for offshore electrical power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1027-1038, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    2. Rogeau, Antoine & Vieubled, Julien & de Coatpont, Matthieu & Affonso Nobrega, Pedro & Erbs, Guillaume & Girard, Robin, 2023. "Techno-economic evaluation and resource assessment of hydrogen production through offshore wind farms: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Judge, Frances & McAuliffe, Fiona Devoy & Sperstad, Iver Bakken & Chester, Rachel & Flannery, Brian & Lynch, Katie & Murphy, Jimmy, 2019. "A lifecycle financial analysis model for offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 370-383.
    4. Koh, J.H. & Ng, E.Y.K., 2016. "Downwind offshore wind turbines: Opportunities, trends and technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 797-808.
    5. Laura, Castro-Santos & Vicente, Diaz-Casas, 2014. "Life-cycle cost analysis of floating offshore wind farms," Renewable Energy, Elsevier, vol. 66(C), pages 41-48.
    6. Sarker, Bhaba R. & Faiz, Tasnim Ibn, 2017. "Minimizing transportation and installation costs for turbines in offshore wind farms," Renewable Energy, Elsevier, vol. 101(C), pages 667-679.
    7. del Sol, Felipe & Sauma, Enzo, 2013. "Economic impacts of installing solar power plants in northern Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 489-498.
    8. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    9. Ferreira, Victor J. & Benveniste, Gabriela & Rapha, José I. & Corchero, Cristina & Domínguez-García, Jose Luis, 2023. "A holistic tool to assess the cost and environmental performance of floating offshore wind farms," Renewable Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gomes Relva, Stefania & Oliveira da Silva, Vinícius & Peyerl, Drielli & Veiga Gimenes, André Luiz & Molares Udaeta, Miguel Edgar, 2020. "Regulating the electro-energetic use of natural gas by gas-to-wire offshore technology: Case study from Brazil," Utilities Policy, Elsevier, vol. 66(C).
    2. Rouzbehi, Kumars & Candela, J. Ignacio & Gharehpetian, Gevork B. & Harnefors, Lennart & Luna, Alvaro & Rodriguez, Pedro, 2017. "Multiterminal DC grids: Operating analogies to AC power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 886-895.
    3. Asad Rehman & Mohsin Ali Koondhar & Zafar Ali & Munawar Jamali & Ragab A. El-Sehiemy, 2023. "Critical Issues of Optimal Reactive Power Compensation Based on an HVAC Transmission System for an Offshore Wind Farm," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    4. Orlandini, Valentina & Pierobon, Leonardo & Schløer, Signe & De Pascale, Andrea & Haglind, Fredrik, 2016. "Dynamic performance of a novel offshore power system integrated with a wind farm," Energy, Elsevier, vol. 109(C), pages 236-247.
    5. Domínguez-García, José Luis & Rogers, Daniel J. & Ugalde-Loo, Carlos E. & Liang, Jun & Gomis-Bellmunt, Oriol, 2012. "Effect of non-standard operating frequencies on the economic cost of offshore AC networks," Renewable Energy, Elsevier, vol. 44(C), pages 267-280.
    6. Christoffer Fjellstedt & Md Imran Ullah & Johan Forslund & Erik Jonasson & Irina Temiz & Karin Thomas, 2022. "A Review of AC and DC Collection Grids for Offshore Renewable Energy with a Qualitative Evaluation for Marine Energy Resources," Energies, MDPI, vol. 15(16), pages 1-26, August.
    7. Islam, A.B.M. Saiful & Jameel, Mohammed & Jumaat, Mohd Zamin & Shirazi, S.M. & Salman, Firas A., 2012. "Review of offshore energy in Malaysia and floating Spar platform for sustainable exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6268-6284.
    8. Ruddy, Jonathan & Meere, Ronan & O’Donnell, Terence, 2016. "Low Frequency AC transmission for offshore wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 75-86.
    9. López, Iraide & Andreu, Jon & Ceballos, Salvador & Martínez de Alegría, Iñigo & Kortabarria, Iñigo, 2013. "Review of wave energy technologies and the necessary power-equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 413-434.
    10. Beels, Charlotte & Troch, Peter & Kofoed, Jens Peter & Frigaard, Peter & Vindahl Kringelum, Jon & Carsten Kromann, Peter & Heyman Donovan, Martin & De Rouck, Julien & De Backer, Griet, 2011. "A methodology for production and cost assessment of a farm of wave energy converters," Renewable Energy, Elsevier, vol. 36(12), pages 3402-3416.
    11. Madariaga, A. & de Alegría, I. Martínez & Martín, J.L. & Eguía, P. & Ceballos, S., 2012. "Current facts about offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3105-3116.
    12. P R Thies & L Johanning & G H Smith, 2012. "Assessing mechanical loading regimes and fatigue life of marine power cables in marine energy applications," Journal of Risk and Reliability, , vol. 226(1), pages 18-32, February.
    13. Blond, S. Le & Bertho, R. & Coury, D.V. & Vieira, J.C.M., 2016. "Design of protection schemes for multi-terminal HVDC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 965-974.
    14. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    15. Möller, Bernd, 2011. "Continuous spatial modelling to analyse planning and economic consequences of offshore wind energy," Energy Policy, Elsevier, vol. 39(2), pages 511-517, February.
    16. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    17. Salari, Mahdi Ebrahimi & Coleman, Joseph & Toal, Daniel, 2019. "Analysis of direct interconnection technique for offshore airborne wind energy systems under normal and fault conditions," Renewable Energy, Elsevier, vol. 131(C), pages 284-296.
    18. Velasco, D. & Trujillo, C.L. & Peña, R.A., 2011. "Power transmission in direct current. Future expectations for Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 759-765, January.
    19. da Silva, Vinícius Oliveira & Relva, Stefania Gomes & Mondragon, Marcella & Mendes, André Bergsten & Nishimoto, Kazuo & Peyerl, Drielli, 2023. "Building Options for the Brazilian Pre-salt: A technical-economic and infrastructure analysis of offshore integration between energy generation and natural gas exploration," Resources Policy, Elsevier, vol. 81(C).
    20. Madariaga, A. & Martín, J.L. & Zamora, I. & Martínez de Alegría, I. & Ceballos, S., 2013. "Technological trends in electric topologies for offshore wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 32-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:676-691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.