IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v19y2013icp489-498.html
   My bibliography  Save this article

Economic impacts of installing solar power plants in northern Chile

Author

Listed:
  • del Sol, Felipe
  • Sauma, Enzo

Abstract

Chile has one of the best worldwide conditions for the generation of electrical energy from solar resources, having an annual average Direct Normal Irradiation (DNI) of 9–10kWh/m2/day. Many important astronomical observatories have been installed in the north of Chile because of the low number of cloudy days and the high sky clearness index. Also, in the north of Chile, there are many mining companies who demand large amounts of load for their operation. They currently use electricity provided from fossil fuels thermoelectric plants (99% of the electrical generation of the Northern Interconnected Power System is thermoelectric) that are subject to fuel-price volatilities and have large global and local impacts on the environment.

Suggested Citation

  • del Sol, Felipe & Sauma, Enzo, 2013. "Economic impacts of installing solar power plants in northern Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 489-498.
  • Handle: RePEc:eee:rensus:v:19:y:2013:i:c:p:489-498
    DOI: 10.1016/j.rser.2012.11.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112006508
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.11.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2012. "A review of solar energy modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2864-2869.
    2. Batman, Alp & Bagriyanik, F. Gul & Aygen, Z. Elif & Gül, Ömer & Bagriyanik, Mustafa, 2012. "A feasibility study of grid-connected photovoltaic systems in Istanbul, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5678-5686.
    3. Izquierdo, Salvador & Montañés, Carlos & Dopazo, César & Fueyo, Norberto, 2010. "Analysis of CSP plants for the definition of energy policies: The influence on electricity cost of solar multiples, capacity factors and energy storage," Energy Policy, Elsevier, vol. 38(10), pages 6215-6221, October.
    4. Corral, Nicolás & Anrique, Nicolás & Fernandes, Dalila & Parrado, Cristóbal & Cáceres, Gustavo, 2012. "Power, placement and LEC evaluation to install CSP plants in northern Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6678-6685.
    5. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    6. Damerau, Kerstin & Williges, Keith & Patt, Anthony G. & Gauché, Paul, 2011. "Costs of reducing water use of concentrating solar power to sustainable levels: Scenarios for North Africa," Energy Policy, Elsevier, vol. 39(7), pages 4391-4398, July.
    7. Kaiser, Mark J. & Snyder, Brian F., 2013. "Modeling offshore wind installation costs on the U.S. Outer Continental Shelf," Renewable Energy, Elsevier, vol. 50(C), pages 676-691.
    8. Makrides, George & Zinsser, Bastian & Norton, Matthew & Georghiou, George E. & Schubert, Markus & Werner, Jürgen H., 2010. "Potential of photovoltaic systems in countries with high solar irradiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 754-762, February.
    9. Poullikkas, Andreas, 2009. "Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region--A case study for the island of Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2474-2484, December.
    10. Santos, J.M. & Pinazo, J.M. & Cañada, J., 2003. "Methodology for generating daily clearness index index values Kt starting from the monthly average daily value K̄t. Determining the daily sequence using stochastic models," Renewable Energy, Elsevier, vol. 28(10), pages 1523-1544.
    11. John M. Marshall & Peter Navarro, 1991. "Costs of Nuclear Power Plant Construction: Theory and New Evidence," RAND Journal of Economics, The RAND Corporation, vol. 22(1), pages 148-154, Spring.
    12. Komendantova, Nadejda & Patt, Anthony & Williges, Keith, 2011. "Solar power investment in North Africa: Reducing perceived risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4829-4835.
    13. Martín, Juan Carlos & Voltes-Dorta, Augusto, 2011. "The econometric estimation of airports' cost function," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 112-127, January.
    14. Larraín, Teresita & Escobar, Rodrigo & Vergara, Julio, 2010. "Performance model to assist solar thermal power plant siting in northern Chile based on backup fuel consumption," Renewable Energy, Elsevier, vol. 35(8), pages 1632-1643.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cornejo, Lorena & Martín-Pomares, Luis & Alarcon, Diego & Blanco, Julián & Polo, Jesús, 2017. "A through analysis of solar irradiation measurements in the region of Arica Parinacota, Chile," Renewable Energy, Elsevier, vol. 112(C), pages 197-208.
    2. Raugei, Marco & Leccisi, Enrica & Fthenakis, Vasilis & Escobar Moragas, Rodrigo & Simsek, Yeliz, 2018. "Net energy analysis and life cycle energy assessment of electricity supply in Chile: Present status and future scenarios," Energy, Elsevier, vol. 162(C), pages 659-668.
    3. Bustos, F. & Toledo, A. & Contreras, J. & Fuentes, A., 2016. "Sensitivity analysis of a photovoltaic solar plant in Chile," Renewable Energy, Elsevier, vol. 87(P1), pages 145-153.
    4. Yanine, Franco Fernando & Caballero, Federico I. & Sauma, Enzo E. & Córdova, Felisa M., 2014. "Homeostatic control, smart metering and efficient energy supply and consumption criteria: A means to building more sustainable hybrid micro-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 235-258.
    5. Bai, Attila & Popp, József & Balogh, Péter & Gabnai, Zoltán & Pályi, Béla & Farkas, István & Pintér, Gábor & Zsiborács, Henrik, 2016. "Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1086-1099.
    6. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    7. Jinwon Bae & Sandy Dall'erba, 2016. "The economic impact of a new solar power plant in Arizona: Comparing the input-output results generated by JEDI vs. IMPLAN," Regional Science Policy & Practice, Wiley Blackwell, vol. 8(1-2), pages 61-73, March.
    8. Simsek, Yeliz & Lorca, Álvaro & Urmee, Tania & Bahri, Parisa A. & Escobar, Rodrigo, 2019. "Review and assessment of energy policy developments in Chile," Energy Policy, Elsevier, vol. 127(C), pages 87-101.
    9. Bendato, Ilaria & Cassettari, Lucia & Mosca, Marco & Mosca, Roberto, 2015. "A design of experiments/response surface methodology approach to study the economic sustainability of a 1MWe photovoltaic plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1664-1679.
    10. Bendato, Ilaria & Bonfiglio, Andrea & Brignone, Massimo & Delfino, Federico & Pampararo, Fabio & Procopio, Renato & Rossi, Mansueto, 2018. "Design criteria for the optimal sizing of integrated photovoltaic-storage systems," Energy, Elsevier, vol. 149(C), pages 505-515.
    11. Salgado Conrado, L. & Rodriguez-Pulido, A. & Calderón, G., 2017. "Thermal performance of parabolic trough solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1345-1359.
    12. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    13. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    14. Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.
    15. Gustavo Cáceres & Shahriyar Nasirov & Huili Zhang & Gerardo Araya-Letelier, 2014. "Residential Solar PV Planning in Santiago, Chile: Incorporating the PM10 Parameter," Sustainability, MDPI, vol. 7(1), pages 1-19, December.
    16. Yu-Ling Hsiao, Cody & Ai, Dan & Wei, Xinyang & Sheng, Ni, 2021. "The contagious effect of China’s energy policy on stock markets: The case of the solar photovoltaic industry," Renewable Energy, Elsevier, vol. 164(C), pages 74-86.
    17. Grágeda, M. & Escudero, M. & Alavia, W. & Ushak, S. & Fthenakis, V., 2016. "Review and multi-criteria assessment of solar energy projects in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 583-596.
    18. Simsek, Yeliz & Mata-Torres, Carlos & Guzmán, Amador M. & Cardemil, Jose M. & Escobar, Rodrigo, 2018. "Sensitivity and effectiveness analysis of incentives for concentrated solar power projects in Chile," Renewable Energy, Elsevier, vol. 129(PA), pages 214-224.
    19. Yunhong Shi & Davood Toghraie & Farzad Nadi & Gholamreza Ahmadi & As’ad Alizadeh & Long Zhang, 2021. "The effect of the pitch angle, two-axis tracking system, and wind velocity on the parabolic trough solar collector thermal performance," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17329-17348, December.
    20. Hajabdollahi, Hassan & Khosravian, Mohammadreza & Shafiey Dehaj, Mohammad, 2022. "Thermo-economic modeling and optimization of a solar network using flat plate collectors," Energy, Elsevier, vol. 244(PB).
    21. Yanine, Franco Fernando & Caballero, Federico I. & Sauma, Enzo E. & Córdova, Felisa M., 2014. "Building sustainable energy systems: Homeostatic control of grid-connected microgrids, as a means to reconcile power supply and energy demand response management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1168-1191.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corral, Nicolás & Anrique, Nicolás & Fernandes, Dalila & Parrado, Cristóbal & Cáceres, Gustavo, 2012. "Power, placement and LEC evaluation to install CSP plants in northern Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6678-6685.
    2. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    3. Lang, Tillmann & Gloerfeld, Erik & Girod, Bastien, 2015. "Don׳t just follow the sun – A global assessment of economic performance for residential building photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 932-951.
    4. George A. Gonzalez, 2016. "Transforming Energy: Solving Climate Change with Technology Policy . New York : Cambridge University Press . 360 pages. ISBN 9781107614970, $29.99 paperback. Anthony Patt , 2015 ," Review of Policy Research, Policy Studies Organization, vol. 33(1), pages 111-113, January.
    5. Martín, Helena & de la Hoz, Jordi & Velasco, Guillermo & Castilla, Miguel & García de Vicuña, José Luís, 2015. "Promotion of concentrating solar thermal power (CSP) in Spain: Performance analysis of the period 1998–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1052-1068.
    6. Boukelia, T.E. & Bouraoui, A. & Laouafi, A. & Djimli, S. & Kabar, Y., 2020. "3E (Energy-Exergy-Economic) comparative study of integrating wet and dry cooling systems in solar tower power plants," Energy, Elsevier, vol. 200(C).
    7. Malagueta, Diego & Szklo, Alexandre & Borba, Bruno Soares Moreira Cesar & Soria, Rafael & Aragão, Raymundo & Schaeffer, Roberto & Dutra, Ricardo, 2013. "Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system," Energy Policy, Elsevier, vol. 59(C), pages 198-212.
    8. Praveen R. P. & Mohammad Abdul Baseer & Ahmed Bilal Awan & Muhammad Zubair, 2018. "Performance Analysis and Optimization of a Parabolic Trough Solar Power Plant in the Middle East Region," Energies, MDPI, vol. 11(4), pages 1-18, March.
    9. Balghouthi, Moncef & Trabelsi, Seif Eddine & Amara, Mahmoud Ben & Ali, Abdessalem Bel Hadj & Guizani, Amenallah, 2016. "Potential of concentrating solar power (CSP) technology in Tunisia and the possibility of interconnection with Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1227-1248.
    10. Cornejo, Lorena & Martín-Pomares, Luis & Alarcon, Diego & Blanco, Julián & Polo, Jesús, 2017. "A through analysis of solar irradiation measurements in the region of Arica Parinacota, Chile," Renewable Energy, Elsevier, vol. 112(C), pages 197-208.
    11. Krishnamurthy, Pranesh & Mishra, Shreya & Banerjee, Rangan, 2012. "An analysis of costs of parabolic trough technology in India," Energy Policy, Elsevier, vol. 48(C), pages 407-419.
    12. Lamnatou, Chr. & Chemisana, D., 2017. "Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 916-932.
    13. Wagner, Sharon J. & Rubin, Edward S., 2014. "Economic implications of thermal energy storage for concentrated solar thermal power," Renewable Energy, Elsevier, vol. 61(C), pages 81-95.
    14. Farooq, Muhammad Khalid & Kumar, S., 2013. "An assessment of renewable energy potential for electricity generation in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 240-254.
    15. Macarena Montané & Gustavo Cáceres & Mauricio Villena & Raúl O’Ryan, 2017. "Techno-Economic Forecasts of Lithium Nitrates for Thermal Storage Systems," Sustainability, MDPI, vol. 9(5), pages 1-15, May.
    16. Ondraczek, Janosch & Komendantova, Nadejda & Patt, Anthony, 2015. "WACC the dog: The effect of financing costs on the levelized cost of solar PV power," Renewable Energy, Elsevier, vol. 75(C), pages 888-898.
    17. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    18. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    19. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    20. Boukelia, T.E. & Ghellab, A. & Laouafi, A. & Bouraoui, A. & Kabar, Y., 2020. "Cooling performances time series of CSP plants: Calculation and analysis using regression and ANN models," Renewable Energy, Elsevier, vol. 157(C), pages 809-827.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:19:y:2013:i:c:p:489-498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.