IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp253-258.html
   My bibliography  Save this article

Study of economic viability of photovoltaic electric power for Quetta – Pakistan

Author

Listed:
  • Khalid, Anjum
  • Junaidi, Haroon

Abstract

This study assess the feasibility of photovoltaic based power plant; for this purpose best site for the location of the project is determined by comparing monthly average daily global solar radiation data of eight Pakistani cities and Quetta city is chosen for the 10 MW plant. RETScreen simulation of the power plant shows that about 23.206 GWh of electricity can be generated in a year if one axis tracking method is employed. At a total cost of $50 m, 50% debt ratio, 9% discount rate the proposed PV plant generates electricity at a rate of $0.157/kWh. The investigation shows that presently the PV based electricity is about 30.8% more expensive as compared to grid supplied electricity. Emission analysis demonstrated that the proposed PV power plant avoided carbon dioxide production by 17,938 tons/year. The analysis shows that presently the proposed PV power plant is not feasible if only economic factors are considered. Sensitivity analysis demonstrates that if total installed cost of the plant is about $35 m then the cost of power from photovoltaic plant will be equal to grid supplied electric power without any subsidy.

Suggested Citation

  • Khalid, Anjum & Junaidi, Haroon, 2013. "Study of economic viability of photovoltaic electric power for Quetta – Pakistan," Renewable Energy, Elsevier, vol. 50(C), pages 253-258.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:253-258
    DOI: 10.1016/j.renene.2012.06.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112003916
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.06.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harder, Elizabeth & Gibson, Jacqueline MacDonald, 2011. "The costs and benefits of large-scale solar photovoltaic power production in Abu Dhabi, United Arab Emirates," Renewable Energy, Elsevier, vol. 36(2), pages 789-796.
    2. Muneer, T. & Asif, M., 2007. "Prospects for secure and sustainable electricity supply for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 654-671, May.
    3. Asif, M., 2009. "Sustainable energy options for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 903-909, May.
    4. Al-Badi, A.H. & Albadi, M.H. & Al-Lawati, A.M. & Malik, A.S., 2011. "Economic perspective of PV electricity in Oman," Energy, Elsevier, vol. 36(1), pages 226-232.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rabbani, Rabab & Zeeshan, Muhammad, 2022. "Impact of policy changes on financial viability of wind power plants in Pakistan," Renewable Energy, Elsevier, vol. 193(C), pages 789-806.
    2. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    3. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    4. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    5. Bustos, F. & Toledo, A. & Contreras, J. & Fuentes, A., 2016. "Sensitivity analysis of a photovoltaic solar plant in Chile," Renewable Energy, Elsevier, vol. 87(P1), pages 145-153.
    6. Arifa Tanveer & Shihong Zeng & Muhammad Irfan & Rui Peng, 2021. "Do Perceived Risk, Perception of Self-Efficacy, and Openness to Technology Matter for Solar PV Adoption? An Application of the Extended Theory of Planned Behavior," Energies, MDPI, vol. 14(16), pages 1-24, August.
    7. Waqas Ahmed & Jamil Ahmed Sheikh & Abbas Z. Kouzani & M. A. Parvez Mahmud, 2020. "The Role of Single End-Users and Producers on GHG Mitigation in Pakistan—A Case Study," Sustainability, MDPI, vol. 12(20), pages 1-12, October.
    8. Seung Hyo Baek & Byung Hee Lee, 2019. "Optimal Decision-Making of Renewable Energy Systems in Buildings in the Early Design Stage," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    9. Sadati, S.M. Sajed & Qureshi, Fassahat Ullah & Baker, Derek, 2015. "Energetic and economic performance analyses of photovoltaic, parabolic trough collector and wind energy systems for Multan, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 844-855.
    10. Abd-ur-Rehman, Hafiz M. & Al-Sulaiman, Fahad A., 2016. "Optimum selection of solar water heating (SWH) systems based on their comparative techno-economic feasibility study for the domestic sector of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 336-349.
    11. Farooqui, Suhail Zaki, 2014. "Prospects of renewables penetration in the energy mix of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 693-700.
    12. Qiu, Tianzhi & Wang, Lunche & Lu, Yunbo & Zhang, Ming & Qin, Wenmin & Wang, Shaoqiang & Wang, Lizhe, 2022. "Potential assessment of photovoltaic power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Qureshi, Tahir Masood & Ullah, Kafait & Arentsen, Maarten J., 2017. "Factors responsible for solar PV adoption at household level: A case of Lahore, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 754-763.
    14. Attia, Ahmed M. & Al Hanbali, Ahmad & Saleh, Haitham H. & Alsawafy, Omar G. & Ghaithan, Ahmed M. & Mohammed, Awsan, 2021. "A multi-objective optimization model for sizing decisions of a grid-connected photovoltaic system," Energy, Elsevier, vol. 229(C).
    15. Rivas, David & Saleme-Vila, Salomón & Ortega-Izaguirre, Rogelio & Chalé-Lara, Fabio & Caballero-Briones, Felipe, 2013. "A climatological estimate of incident solar energy in Tamaulipas, northeastern Mexico," Renewable Energy, Elsevier, vol. 60(C), pages 293-301.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    2. Mirzahosseini, Alireza Hajiseyed & Taheri, Taraneh, 2012. "Environmental, technical and financial feasibility study of solar power plants by RETScreen, according to the targeting of energy subsidies in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2806-2811.
    3. Rafi Amir-Ud-Din, 2014. "From Energy Blues to Green Energy: Options Before Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 53(4), pages 309-325.
    4. Safder, Usman & Hai, Tra Nguyen & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Nationwide policymaking strategies to prevent future electricity crises in developing countries using data-driven forecasting and fuzzy-SWOT analyses," Energy, Elsevier, vol. 259(C).
    5. Aman, M.M. & Jasmon, G.B. & Ghufran, A. & Bakar, A.H.A. & Mokhlis, H., 2013. "Investigating possible wind energy potential to meet the power shortage in Karachi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 528-542.
    6. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    7. Sophia Akhtar & M Khurram Hashmi & Ishaq Ahmad & Rizwan Raza, 2018. "Advances and significance of solar reflectors in solar energy technology in Pakistan," Energy & Environment, , vol. 29(4), pages 435-455, June.
    8. Anwar, Javed, 2016. "Analysis of energy security, environmental emission and fuel import costs under energy import reduction targets: A case of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1065-1078.
    9. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    10. Tahir, Z.R. & Asim, Muhammad, 2018. "Surface measured solar radiation data and solar energy resource assessment of Pakistan: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2839-2861.
    11. Mahmood, Anzar & Javaid, Nadeem & Zafar, Adnan & Ali Riaz, Raja & Ahmed, Saeed & Razzaq, Sohail, 2014. "Pakistan's overall energy potential assessment, comparison of LNG, TAPI and IPI gas projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 182-193.
    12. Hayat, Farah & Pirzada, Muhammad Daniel Saeed & Khan, Abid Ali, 2018. "The validation of Granger causality through formulation and use of finance-growth-energy indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1859-1867.
    13. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    15. Tholkappiyan Ramachandran & Abdel-Hamid I. Mourad & Fathalla Hamed, 2022. "A Review on Solar Energy Utilization and Projects: Development in and around the UAE," Energies, MDPI, vol. 15(10), pages 1-27, May.
    16. Rafique, M. Mujahid & Rehman, S., 2017. "National energy scenario of Pakistan – Current status, future alternatives, and institutional infrastructure: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 156-167.
    17. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.
    18. Maqbool, Rashid, 2018. "Efficiency and effectiveness of factors affecting renewable energy projects; an empirical perspective," Energy, Elsevier, vol. 158(C), pages 944-956.
    19. Mabroor Hassan & Manzoor K Afridi & Muhammad I Khan, 2018. "An overview of alternative and renewable energy governance, barriers, and opportunities in Pakistan," Energy & Environment, , vol. 29(2), pages 184-203, March.
    20. Duan, Wenqi & Khurshid, Adnan & Nazir, Naila & Khan, Khalid & Calin, Adrian Cantemir, 2022. "From gray to green: Energy crises and the role of CPEC," Renewable Energy, Elsevier, vol. 190(C), pages 188-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:253-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.