IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v229y2021ics0360544221009786.html
   My bibliography  Save this article

A multi-objective optimization model for sizing decisions of a grid-connected photovoltaic system

Author

Listed:
  • Attia, Ahmed M.
  • Al Hanbali, Ahmad
  • Saleh, Haitham H.
  • Alsawafy, Omar G.
  • Ghaithan, Ahmed M.
  • Mohammed, Awsan

Abstract

Greenhouse gasses are by-products of using fossil fuels to generate energy. It is known that climate change is caused by an increase in greenhouse gasses in the Earth's atmosphere. Solar energy is a renewable energy source that is an environmentally friendly resource for generating power. The photovoltaic (PV) system is a well-established technology for transforming solar energy into electric power. Sizing-decisions of a PV system is a strategic decision-making process that has a long-term impact on the project. This work proposes a multi-objective optimization (MOO) model for sizing-decisions of a grid-connected PV system. The objectives consider the economic aspect in terms of minimizing the project lifespan costs and non-economic aspects, including maximizing system reliability and reducing CO2 emissions. The sizing decisions are the number of PV panels, the amount of energy purchased from the main grid, and the amount of energy supplied to the main grid. In addition to a binary variable for an either-or decision, either purchase or supply from the grid. The model generates Pareto-optima to assist the decision-maker in assessing trade-offs between alternatives. A case study based on monthly demand for the residential area at King Fahd University of Petroleum & Minerals (KFUPM) is provided to clarify the practicality of the model. It is found that 1713 PV modules are required to meet annual demand at an annual cost of M$1.61 over 25 years.

Suggested Citation

  • Attia, Ahmed M. & Al Hanbali, Ahmad & Saleh, Haitham H. & Alsawafy, Omar G. & Ghaithan, Ahmed M. & Mohammed, Awsan, 2021. "A multi-objective optimization model for sizing decisions of a grid-connected photovoltaic system," Energy, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:energy:v:229:y:2021:i:c:s0360544221009786
    DOI: 10.1016/j.energy.2021.120730
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221009786
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Audenaert, Amaryllis & De Boeck, Liesje & De Cleyn, Sven & Lizin, Sebastien & Adam, Jean-François, 2010. "An economic evaluation of photovoltaic grid connected systems (PVGCS) in Flanders for companies: A generic model," Renewable Energy, Elsevier, vol. 35(12), pages 2674-2682.
    2. Mohammadi, Kasra & Naderi, Mahmoud & Saghafifar, Mohammad, 2018. "Economic feasibility of developing grid-connected photovoltaic plants in the southern coast of Iran," Energy, Elsevier, vol. 156(C), pages 17-31.
    3. EL-Shimy, M., 2009. "Viability analysis of PV power plants in Egypt," Renewable Energy, Elsevier, vol. 34(10), pages 2187-2196.
    4. Kaabeche, A. & Belhamel, M. & Ibtiouen, R., 2011. "Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system," Energy, Elsevier, vol. 36(2), pages 1214-1222.
    5. Türkay, Belgin Emre & Telli, Ali Yasin, 2011. "Economic analysis of standalone and grid connected hybrid energy systems," Renewable Energy, Elsevier, vol. 36(7), pages 1931-1943.
    6. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
    7. Audenaert, Amaryllis & De Boeck, Liesje & De Cleyn, Sven & Lizin, Sebastien & Adam, Jean-Franois, 2010. "An economic evaluation of photovoltaic grid connected systems (PVGCS) in Flanders for companies: a generic model," Working Papers 2010/16, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    8. Gomez-Gonzalez, M. & Hernandez, J.C. & Vera, D. & Jurado, F., 2020. "Optimal sizing and power schedule in PV household-prosumers for improving PV self-consumption and providing frequency containment reserve," Energy, Elsevier, vol. 191(C).
    9. Ndwali, Kasereka & Njiri, Jackson G. & Wanjiru, Evan M., 2020. "Multi-objective optimal sizing of grid connected photovoltaic batteryless system minimizing the total life cycle cost and the grid energy," Renewable Energy, Elsevier, vol. 148(C), pages 1256-1265.
    10. González, Arnau & Riba, Jordi-Roger & Rius, Antoni & Puig, Rita, 2015. "Optimal sizing of a hybrid grid-connected photovoltaic and wind power system," Applied Energy, Elsevier, vol. 154(C), pages 752-762.
    11. Ferrer-Martí, L. & Domenech, B. & García-Villoria, A. & Pastor, R., 2013. "A MILP model to design hybrid wind–photovoltaic isolated rural electrification projects in developing countries," European Journal of Operational Research, Elsevier, vol. 226(2), pages 293-300.
    12. Hernández, J.C. & Sanchez-Sutil, F. & Muñoz-Rodríguez, F.J., 2019. "Design criteria for the optimal sizing of a hybrid energy storage system in PV household-prosumers to maximize self-consumption and self-sufficiency," Energy, Elsevier, vol. 186(C).
    13. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    14. Tsuanyo, David & Azoumah, Yao & Aussel, Didier & Neveu, Pierre, 2015. "Modeling and optimization of batteryless hybrid PV (photovoltaic)/Diesel systems for off-grid applications," Energy, Elsevier, vol. 86(C), pages 152-163.
    15. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    16. Abbes, Dhaker & Martinez, André & Champenois, Gérard, 2014. "Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 46-62.
    17. Firouzjah, Khalil Gorgani, 2018. "Assessment of small-scale solar PV systems in Iran: Regions priority, potentials and financial feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 267-274.
    18. Alam Hossain Mondal, Md. & Sadrul Islam, A.K.M., 2011. "Potential and viability of grid-connected solar PV system in Bangladesh," Renewable Energy, Elsevier, vol. 36(6), pages 1869-1874.
    19. Hernández, J.C. & Sanchez-Sutil, F. & Muñoz-Rodríguez, F.J. & Baier, C.R., 2020. "Optimal sizing and management strategy for PV household-prosumers with self-consumption/sufficiency enhancement and provision of frequency containment reserve," Applied Energy, Elsevier, vol. 277(C).
    20. Ramli, Makbul A.M. & Hiendro, Ayong & Sedraoui, Khaled & Twaha, Ssennoga, 2015. "Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia," Renewable Energy, Elsevier, vol. 75(C), pages 489-495.
    21. Khalid, Anjum & Junaidi, Haroon, 2013. "Study of economic viability of photovoltaic electric power for Quetta – Pakistan," Renewable Energy, Elsevier, vol. 50(C), pages 253-258.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Ya Deng, 2022. "Multi-Objective Optimization Information Fusion and Its Applications for Logistics Centers Maximum Coverage," International Journal of Information Systems and Supply Chain Management (IJISSCM), IGI Global, vol. 15(2), pages 1-12, April.
    2. Ghaithan, Ahmed M. & Mohammed, Awsan & Al-Hanbali, Ahmad & Attia, Ahmed M. & Saleh, Haitham, 2022. "Multi-objective optimization of a photovoltaic-wind- grid connected system to power reverse osmosis desalination plant," Energy, Elsevier, vol. 251(C).
    3. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ndwali, Kasereka & Njiri, Jackson G. & Wanjiru, Evan M., 2020. "Multi-objective optimal sizing of grid connected photovoltaic batteryless system minimizing the total life cycle cost and the grid energy," Renewable Energy, Elsevier, vol. 148(C), pages 1256-1265.
    2. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    3. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    4. Twaha, Ssennoga & Idris, Mohd Hafizi & Anwari, Makbul & Khairuddin, Azhar, 2012. "Applying grid-connected photovoltaic system as alternative source of electricity to supplement hydro power instead of using diesel in Uganda," Energy, Elsevier, vol. 37(1), pages 185-194.
    5. Wang, Zhuo & Gladwin, Daniel T. & Smith, Matthew J. & Haass, Stefan, 2021. "Practical state estimation using Kalman filter methods for large-scale battery systems," Applied Energy, Elsevier, vol. 294(C).
    6. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    7. Zhang, Haifeng & Tian, Ming & Zhang, Cong & Wang, Bin & Wang, Dai, 2021. "A systematic solution to quantify economic values of vehicle grid integration," Energy, Elsevier, vol. 232(C).
    8. Krzysztof Piatek & Andrzej Firlit & Krzysztof Chmielowiec & Mateusz Dutka & Szymon Barczentewicz & Zbigniew Hanzelka, 2021. "Optimal Selection of Metering Points for Power Quality Measurements in Distribution System," Energies, MDPI, vol. 14(4), pages 1-18, February.
    9. Bustos, F. & Toledo, A. & Contreras, J. & Fuentes, A., 2016. "Sensitivity analysis of a photovoltaic solar plant in Chile," Renewable Energy, Elsevier, vol. 87(P1), pages 145-153.
    10. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    11. Youssef Kassem & Hüseyin Gökçekuş & Ali Güvensoy, 2021. "Techno-Economic Feasibility of Grid-Connected Solar PV System at Near East University Hospital, Northern Cyprus," Energies, MDPI, vol. 14(22), pages 1-27, November.
    12. Hamed Khodayar Sahebi & Siamak Hoseinzadeh & Hossein Ghadamian & Mohammad Hadi Ghasemi & Farbod Esmaeilion & Davide Astiaso Garcia, 2021. "Techno-Economic Analysis and New Design of a Photovoltaic Power Plant by a Direct Radiation Amplification System," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    13. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    14. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    15. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
    16. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    17. Hee-Kwan Shin & Jae-Min Cho & Eul-Bum Lee, 2019. "Electrical Power Characteristics and Economic Analysis of Distributed Generation System Using Renewable Energy: Applied to Iron and Steel Plants," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    18. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    19. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Mohammed, Mohd Fayzul & Ramli, Makbul A.M., 2020. "Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq," Energy, Elsevier, vol. 191(C).
    20. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:229:y:2021:i:c:s0360544221009786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.