IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v3y1993i1p49-60.html
   My bibliography  Save this article

Parametric study of a packed bed dehumidifier/regenerator using CaCl2 liquid desiccant

Author

Listed:
  • Radhwan, A.M.
  • Gari, H.N.
  • Elsayed, M.M.

Abstract

The processes occurring in a packed bed dehumidifier, which is part of a liquid desiccant solar cooling system, are mathematically simulated. The air flows in a counter flow direction to the liquid desiccant (CaCl2). The effect of varying the air, liquid flow rates and bed geometry are studied in addition to studying the effect due to varying the air and liquid desiccant inlet coditions. The inlet temperature of the liquid desiccant during the air dehumidification process has a strong effect on the other parameters, while the air inlet temperature has a negligible effect. It is also noticed that higher temperatures of air and while the air inlet temperature has a negligible effect. It is also noticed that higher temperatures of air and liquid desiccant enhance the liquid desiccant regeneration processes but by different ratios. The study showed that both the air and liquid desiccant flow rates have negligible effect on the bed exit humidity ratio of air whereas the liquid flow rate has a strong effect on the bed exit moisture content of the liquid. It is also observed that increasing the air flow rate enhances the liquid desiccant regeneration (air humidification) process. Regardless of the inlet moisture content of the liquid desiccant, it is found that as the product (LAs) gets larger, the exit air humidity gets less.

Suggested Citation

  • Radhwan, A.M. & Gari, H.N. & Elsayed, M.M., 1993. "Parametric study of a packed bed dehumidifier/regenerator using CaCl2 liquid desiccant," Renewable Energy, Elsevier, vol. 3(1), pages 49-60.
  • Handle: RePEc:eee:renene:v:3:y:1993:i:1:p:49-60
    DOI: 10.1016/0960-1481(93)90130-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0960148193901309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0960-1481(93)90130-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdel-Salam, Mohamed R.H. & Ge, Gaoming & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 700-728.
    2. Elsayed, Moustafa M., 1994. "Analysis of air dehumidification using liquid desiccant system," Renewable Energy, Elsevier, vol. 4(5), pages 519-528.
    3. Rafique, M. Mujahid & Gandhidasan, P. & Bahaidarah, Haitham M.S., 2016. "Liquid desiccant materials and dehumidifiers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 179-195.
    4. Rahamah, A. & Elsayed, M.M. & Al-Najem, N.M., 1998. "A numerical solution for cooling and dehumidification of air by a falling desiccant film in parallel flow," Renewable Energy, Elsevier, vol. 13(3), pages 305-322.
    5. Audah, N. & Ghaddar, N. & Ghali, K., 2011. "Optimized solar-powered liquid desiccant system to supply building fresh water and cooling needs," Applied Energy, Elsevier, vol. 88(11), pages 3726-3736.
    6. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    7. Ali, Ameer & Ishaque, Kashif & Lashin, Aref & Al Arifi, Nassir, 2017. "Modeling of a liquid desiccant dehumidification system for close type greenhouse cultivation," Energy, Elsevier, vol. 118(C), pages 578-589.
    8. Enteria, Napoleon & Yoshino, Hiroshi & Mochida, Akashi, 2013. "Review of the advances in open-cycle absorption air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 265-289.
    9. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    10. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    11. Kumar, Ritunesh & Dhar, P.L. & Jain, Sanjeev, 2011. "Development of new wire mesh packings for improving the performance of zero carryover spray tower," Energy, Elsevier, vol. 36(2), pages 1362-1374.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:3:y:1993:i:1:p:49-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.