IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v45y2012icp163-174.html
   My bibliography  Save this article

Microeolic turbines in the built environment: Influence of the installation site on the potential energy yield

Author

Listed:
  • Balduzzi, Francesco
  • Bianchini, Alessandro
  • Ferrari, Lorenzo

Abstract

Generic proposals for an effective integration of renewable energy sources in the urban environment are frequently carried out by project developers, local governments and media, although an in-depth knowledge of the technical and energetic limitations is often missing. In particular, the installation of small wind turbines on the rooftops of tall buildings is considered to represent an attractive solution thanks to the supposed possibility of exploiting local flow accelerations induced by the building façades. The real feasibility of this scenario has, however, yet to be proved, both in terms of real energy harvesting and of compatibility of the machines with a densely populated area.

Suggested Citation

  • Balduzzi, Francesco & Bianchini, Alessandro & Ferrari, Lorenzo, 2012. "Microeolic turbines in the built environment: Influence of the installation site on the potential energy yield," Renewable Energy, Elsevier, vol. 45(C), pages 163-174.
  • Handle: RePEc:eee:renene:v:45:y:2012:i:c:p:163-174
    DOI: 10.1016/j.renene.2012.02.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112001619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.02.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qiang & Wang, Jianwen & Hou, Yali & Yuan, Renyu & Luo, Kun & Fan, Jianren, 2018. "Micrositing of roof mounting wind turbine in urban environment: CFD simulations and lidar measurements," Renewable Energy, Elsevier, vol. 115(C), pages 1118-1133.
    2. Oscar Garcia & Alain Ulazia & Mario del Rio & Sheila Carreno-Madinabeitia & Andoni Gonzalez-Arceo, 2019. "An Energy Potential Estimation Methodology and Novel Prototype Design for Building-Integrated Wind Turbines," Energies, MDPI, vol. 12(10), pages 1-21, May.
    3. Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.
    4. Bashirzadeh Tabrizi, Amir & Whale, Jonathan & Lyons, Thomas & Urmee, Tania & Peinke, Joachim, 2017. "Modelling the structural loading of a small wind turbine at a highly turbulent site via modifications to the Kaimal turbulence spectra," Renewable Energy, Elsevier, vol. 105(C), pages 288-300.
    5. Hernández, Ó. Soto & Volkov, K. & Martín Mederos, A.C. & Medina Padrón, J.F. & Feijóo Lorenzo, A.E., 2015. "Power output of a wind turbine installed in an already existing viaduct," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 287-299.
    6. Francesco Balduzzi & Marco Zini & Andreu Carbó Molina & Gianni Bartoli & Tim De Troyer & Mark C. Runacres & Giovanni Ferrara & Alessandro Bianchini, 2020. "Understanding the Aerodynamic Behavior and Energy Conversion Capability of Small Darrieus Vertical Axis Wind Turbines in Turbulent Flows," Energies, MDPI, vol. 13(11), pages 1-15, June.
    7. Tabrizi, Amir Bashirzadeh & Whale, Jonathan & Lyons, Thomas & Urmee, Tania, 2014. "Performance and safety of rooftop wind turbines: Use of CFD to gain insight into inflow conditions," Renewable Energy, Elsevier, vol. 67(C), pages 242-251.
    8. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    9. Yang, An-Shik & Su, Ying-Ming & Wen, Chih-Yung & Juan, Yu-Hsuan & Wang, Wei-Siang & Cheng, Chiang-Ho, 2016. "Estimation of wind power generation in dense urban area," Applied Energy, Elsevier, vol. 171(C), pages 213-230.
    10. Juan, Yu-Hsuan & Wen, Chih-Yung & Li, Zhengtong & Yang, An-Shik, 2021. "Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays," Applied Energy, Elsevier, vol. 299(C).
    11. Matteo Vedovelli & Abdelgalil Eltayesh & Francesco Natili & Francesco Castellani, 2022. "Experimental and Numerical Investigation of the Effect of Blades Number on the Dynamic Response of a Small Horizontal-Axis Wind Turbine," Energies, MDPI, vol. 15(23), pages 1-19, December.
    12. Juan, Y.-H. & Wen, C.-Y. & Chen, W.-Y. & Yang, A.-S., 2021. "Numerical assessments of wind power potential and installation arrangements in realistic highly urbanized areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Juan, Yu-Hsuan & Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert & Wen, Chih-Yung & Yang, An-Shik, 2022. "CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height," Applied Energy, Elsevier, vol. 321(C).
    14. Zhang, Shuaibin & Du, Bowen & Ge, Mingwei & Zuo, Yingtao, 2022. "Study on the operation of small rooftop wind turbines and its effect on the wind environment in blocks," Renewable Energy, Elsevier, vol. 183(C), pages 708-718.
    15. Yossri, Widad & Ben Ayed, Samah & Abdelkefi, Abdessattar, 2021. "Airfoil type and blade size effects on the aerodynamic performance of small-scale wind turbines: Computational fluid dynamics investigation," Energy, Elsevier, vol. 229(C).
    16. Rocha, P.A. Costa & Rocha, H.H. Barbosa & Carneiro, F.O. Moura & Vieira da Silva, M.E. & Bueno, A. Valente, 2014. "k–ω SST (shear stress transport) turbulence model calibration: A case study on a small scale horizontal axis wind turbine," Energy, Elsevier, vol. 65(C), pages 412-418.
    17. Xu, Wenhao & Li, Gaohua & Zheng, Xiaobo & Li, Ye & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part I, wind turbines on the side of single building," Renewable Energy, Elsevier, vol. 177(C), pages 461-474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:45:y:2012:i:c:p:163-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.