IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp1118-1133.html
   My bibliography  Save this article

Micrositing of roof mounting wind turbine in urban environment: CFD simulations and lidar measurements

Author

Listed:
  • Wang, Qiang
  • Wang, Jianwen
  • Hou, Yali
  • Yuan, Renyu
  • Luo, Kun
  • Fan, Jianren

Abstract

Roof mounting wind turbine (RMWT) is a promising form of wind energy utilization in urban environment. According to the International Energy Agency wind task 27, a recommended practice on micrositing of small wind turbines in the areas of high turbulence needs to be formulated. A computational fluid dynamics (CFD) study on the wind turbulence characteristics over the Engineering and Technology Building (ETB) on campus based on the urban atmospheric boundary layer (UABL) inflow condition is conducted, and the results are validated by wind lidar measurements. The micrositing method of RMWT is developed based on the CFD simulations, which contains preliminary and accurate micrositings. Results from this investigation suggest that the optimum installation height ranges from 1.51 to 1.79 times the height of building and the best locations are at the forefront where the wind acceleration reaches the maximum, as the wind direction varies. The methods developed in this paper can provide a feasible scheme for micrositing of RMWTs in urban environment and the results can also serve as a recommendation to this topic.

Suggested Citation

  • Wang, Qiang & Wang, Jianwen & Hou, Yali & Yuan, Renyu & Luo, Kun & Fan, Jianren, 2018. "Micrositing of roof mounting wind turbine in urban environment: CFD simulations and lidar measurements," Renewable Energy, Elsevier, vol. 115(C), pages 1118-1133.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:1118-1133
    DOI: 10.1016/j.renene.2017.09.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117309060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.09.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balduzzi, Francesco & Bianchini, Alessandro & Ferrari, Lorenzo, 2012. "Microeolic turbines in the built environment: Influence of the installation site on the potential energy yield," Renewable Energy, Elsevier, vol. 45(C), pages 163-174.
    2. Lu, Lin & Ip, Ka Yan, 2009. "Investigation on the feasibility and enhancement methods of wind power utilization in high-rise buildings of Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 450-461, February.
    3. Ledo, L. & Kosasih, P.B. & Cooper, P., 2011. "Roof mounting site analysis for micro-wind turbines," Renewable Energy, Elsevier, vol. 36(5), pages 1379-1391.
    4. Abohela, Islam & Hamza, Neveen & Dudek, Steven, 2013. "Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines," Renewable Energy, Elsevier, vol. 50(C), pages 1106-1118.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arteaga-López, Ernesto & Angeles-Camacho, César, 2021. "Innovative virtual computational domain based on wind rose diagrams for micrositing small wind turbines," Energy, Elsevier, vol. 220(C).
    2. Xu, Wenhao & Li, Ye & Li, Gaohua & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part II, array of vertical axis wind turbines between buildings," Renewable Energy, Elsevier, vol. 176(C), pages 25-39.
    3. Juan, Yu-Hsuan & Wen, Chih-Yung & Li, Zhengtong & Yang, An-Shik, 2021. "Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays," Applied Energy, Elsevier, vol. 299(C).
    4. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    5. Li, Gang & Li, Yidian & Li, Jia & Huang, Huilan & Huang, Liyan, 2023. "Research on dynamic characteristics of vertical axis wind turbine extended to the outside of buildings," Energy, Elsevier, vol. 272(C).
    6. Zahra Sefidgar & Amir Ahmadi Joneidi & Ahmad Arabkoohsar, 2023. "A Comprehensive Review on Development and Applications of Cross-Flow Wind Turbines," Sustainability, MDPI, vol. 15(5), pages 1-39, March.
    7. Mohammad Reza Kavian Nezhad & Khashayar RahnamayBahambary & Carlos F. Lange & Brian A. Fleck, 2023. "Modified Accuracy of RANS Modeling of Urban Pollutant Flow within Generic Building Clusters Using a High-Quality Full-Scale Dispersion Dataset," Sustainability, MDPI, vol. 15(19), pages 1-31, September.
    8. Juan, Y.-H. & Wen, C.-Y. & Chen, W.-Y. & Yang, A.-S., 2021. "Numerical assessments of wind power potential and installation arrangements in realistic highly urbanized areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Juan, Yu-Hsuan & Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert & Wen, Chih-Yung & Yang, An-Shik, 2022. "CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height," Applied Energy, Elsevier, vol. 321(C).
    10. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    11. Sarah Jamal Mattar & Mohammad Reza Kavian Nezhad & Michael Versteege & Carlos F. Lange & Brian A. Fleck, 2021. "Validation Process for Rooftop Wind Regime CFD Model in Complex Urban Environment Using an Experimental Measurement Campaign," Energies, MDPI, vol. 14(9), pages 1-19, April.
    12. Dai, S.F. & Liu, H.J. & Chu, Y.J. & Lam, H.F. & Peng, H.Y., 2022. "Impact of corner modification on wind characteristics and wind energy potential over flat roofs of tall buildings," Energy, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan, Y.-H. & Wen, C.-Y. & Chen, W.-Y. & Yang, A.-S., 2021. "Numerical assessments of wind power potential and installation arrangements in realistic highly urbanized areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Hernández, Ó. Soto & Volkov, K. & Martín Mederos, A.C. & Medina Padrón, J.F. & Feijóo Lorenzo, A.E., 2015. "Power output of a wind turbine installed in an already existing viaduct," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 287-299.
    3. Yang, An-Shik & Su, Ying-Ming & Wen, Chih-Yung & Juan, Yu-Hsuan & Wang, Wei-Siang & Cheng, Chiang-Ho, 2016. "Estimation of wind power generation in dense urban area," Applied Energy, Elsevier, vol. 171(C), pages 213-230.
    4. Juan, Yu-Hsuan & Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert & Wen, Chih-Yung & Yang, An-Shik, 2022. "CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height," Applied Energy, Elsevier, vol. 321(C).
    5. Juan, Yu-Hsuan & Wen, Chih-Yung & Li, Zhengtong & Yang, An-Shik, 2021. "Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays," Applied Energy, Elsevier, vol. 299(C).
    6. Zhang, Shuaibin & Du, Bowen & Ge, Mingwei & Zuo, Yingtao, 2022. "Study on the operation of small rooftop wind turbines and its effect on the wind environment in blocks," Renewable Energy, Elsevier, vol. 183(C), pages 708-718.
    7. Jangyoul You & Kipyo You & Minwoo Park & Changhee Lee, 2021. "Airflow Characteristics According to the Change in the Height and Porous Rate of Building Roofs for Efficient Installation of Small Wind Power Generators," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    8. Toja-Silva, Francisco & Lopez-Garcia, Oscar & Peralta, Carlos & Navarro, Jorge & Cruz, Ignacio, 2016. "An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings," Applied Energy, Elsevier, vol. 164(C), pages 769-794.
    9. KC, Anup & Whale, Jonathan & Urmee, Tania, 2019. "Urban wind conditions and small wind turbines in the built environment: A review," Renewable Energy, Elsevier, vol. 131(C), pages 268-283.
    10. Dai, S.F. & Liu, H.J. & Chu, Y.J. & Lam, H.F. & Peng, H.Y., 2022. "Impact of corner modification on wind characteristics and wind energy potential over flat roofs of tall buildings," Energy, Elsevier, vol. 241(C).
    11. Anbarsooz, M. & Amiri, M., 2022. "Towards enhancing the wind energy potential at the built environment: Geometry effects of two adjacent buildings," Energy, Elsevier, vol. 239(PD).
    12. Dai, S.F. & Liu, H.J. & Peng, H.Y., 2022. "Assessment of parapet effect on wind flow properties and wind energy potential over roofs of tall buildings," Renewable Energy, Elsevier, vol. 199(C), pages 826-839.
    13. Toja-Silva, Francisco & Colmenar-Santos, Antonio & Castro-Gil, Manuel, 2013. "Urban wind energy exploitation systems: Behaviour under multidirectional flow conditions—Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 364-378.
    14. Manganhar, Abdul Latif & Rajpar, Altaf Hussain & Luhur, Muhammad Ramzan & Samo, Saleem Raza & Manganhar, Mehtab, 2019. "Performance analysis of a savonius vertical axis wind turbine integrated with wind accelerating and guiding rotor house," Renewable Energy, Elsevier, vol. 136(C), pages 512-520.
    15. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    16. Takaaki Kono & Tetsuya Kogaki & Takahiro Kiwata, 2016. "Numerical Investigation of Wind Conditions for Roof-Mounted Wind Turbines: Effects of Wind Direction and Horizontal Aspect Ratio of a High-Rise Cuboid Building," Energies, MDPI, vol. 9(11), pages 1-20, November.
    17. Zhaoyong Mao & Guangyong Yang & Tianqi Zhang & Wenlong Tian, 2020. "Aerodynamic Performance Analysis of a Building-Integrated Savonius Turbine," Energies, MDPI, vol. 13(10), pages 1-21, May.
    18. ArabGolarcheh, Alireza & Anbarsooz, Morteza & Benini, Ernesto, 2024. "An actuator line method for performance prediction of HAWTs at urban flow conditions: A case study of rooftop wind turbines," Energy, Elsevier, vol. 292(C).
    19. M. Abdelsalam, Ali & Abdelmordy, M. & Ibrahim, K.A. & Sakr, I.M., 2023. "An investigation on flow behavior and performance of a wind turbine integrated within a building tunnel," Energy, Elsevier, vol. 280(C).
    20. Ye, Xiulan & Zhang, Xuelin & Weerasuriya, A.U. & Hang, Jian & Zeng, Liyue & Li, Cruz Y., 2024. "Optimum design parameters for a venturi-shaped roof to maximize the performance of building-integrated wind turbines," Applied Energy, Elsevier, vol. 355(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:1118-1133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.