Modelling the structural loading of a small wind turbine at a highly turbulent site via modifications to the Kaimal turbulence spectra
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2016.12.074
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Balduzzi, Francesco & Bianchini, Alessandro & Ferrari, Lorenzo, 2012. "Microeolic turbines in the built environment: Influence of the installation site on the potential energy yield," Renewable Energy, Elsevier, vol. 45(C), pages 163-174.
- Ross, S.J. & McHenry, M.P. & Whale, J., 2012. "The impact of state feed-in tariffs and federal tradable quota support policies on grid-connected small wind turbine installed capacity in Australia," Renewable Energy, Elsevier, vol. 46(C), pages 141-147.
- Tabrizi, Amir Bashirzadeh & Whale, Jonathan & Lyons, Thomas & Urmee, Tania, 2014. "Performance and safety of rooftop wind turbines: Use of CFD to gain insight into inflow conditions," Renewable Energy, Elsevier, vol. 67(C), pages 242-251.
- Ledo, L. & Kosasih, P.B. & Cooper, P., 2011. "Roof mounting site analysis for micro-wind turbines," Renewable Energy, Elsevier, vol. 36(5), pages 1379-1391.
- Jang, Yun Jung & Choi, Chan Woong & Lee, Jang Ho & Kang, Ki Weon, 2015. "Development of fatigue life prediction method and effect of 10-minute mean wind speed distribution on fatigue life of small wind turbine composite blade," Renewable Energy, Elsevier, vol. 79(C), pages 187-198.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- KC, Anup & Whale, Jonathan & Urmee, Tania, 2019. "Urban wind conditions and small wind turbines in the built environment: A review," Renewable Energy, Elsevier, vol. 131(C), pages 268-283.
- Evans, S.P. & Bradney, D.R. & Clausen, P.D., 2018. "Assessing the IEC simplified fatigue load equations for small wind turbine blades: How simple is too simple?," Renewable Energy, Elsevier, vol. 127(C), pages 24-31.
- Liu, Zhenqing & Diao, Zheng & Ishihara, Takeshi, 2019. "Study of the flow fields over simplified topographies with different roughness conditions using large eddy simulations," Renewable Energy, Elsevier, vol. 136(C), pages 968-992.
- Sun, Jili & Chen, Zheng & Yu, Hao & Gao, Shan & Wang, Bin & Ying, You & Sun, Yong & Qian, Peng & Zhang, Dahai & Si, Yulin, 2022. "Quantitative evaluation of yaw-misalignment and aerodynamic wake induced fatigue loads of offshore Wind turbines," Renewable Energy, Elsevier, vol. 199(C), pages 71-86.
- Battisti, L. & Benini, E. & Brighenti, A. & Dell’Anna, S. & Raciti Castelli, M., 2018. "Small wind turbine effectiveness in the urban environment," Renewable Energy, Elsevier, vol. 129(PA), pages 102-113.
- Rakib, M.I. & Evans, S.P. & Clausen, P.D., 2020. "Measured gust events in the urban environment, a comparison with the IEC standard," Renewable Energy, Elsevier, vol. 146(C), pages 1134-1142.
- Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
- Liu, Guangbiao & Zhou, Jianzhong & Jia, Benjun & He, Feifei & Yang, Yuqi & Sun, Na, 2019. "Advance short-term wind energy quality assessment based on instantaneous standard deviation and variogram of wind speed by a hybrid method," Applied Energy, Elsevier, vol. 238(C), pages 643-667.
- Khazaee, Meghdad & Derian, Pierre & Mouraud, Anthony, 2022. "A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods," Renewable Energy, Elsevier, vol. 199(C), pages 1568-1579.
- Fan Zhang & Juchuan Dai & Deshun Liu & Linxing Li & Xin Long, 2019. "Investigation of the Pitch Load of Large-Scale Wind Turbines Using Field SCADA Data," Energies, MDPI, vol. 12(3), pages 1-20, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Juan, Yu-Hsuan & Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert & Wen, Chih-Yung & Yang, An-Shik, 2022. "CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height," Applied Energy, Elsevier, vol. 321(C).
- Juan, Y.-H. & Wen, C.-Y. & Chen, W.-Y. & Yang, A.-S., 2021. "Numerical assessments of wind power potential and installation arrangements in realistic highly urbanized areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Yang, An-Shik & Su, Ying-Ming & Wen, Chih-Yung & Juan, Yu-Hsuan & Wang, Wei-Siang & Cheng, Chiang-Ho, 2016. "Estimation of wind power generation in dense urban area," Applied Energy, Elsevier, vol. 171(C), pages 213-230.
- Wang, Qiang & Wang, Jianwen & Hou, Yali & Yuan, Renyu & Luo, Kun & Fan, Jianren, 2018. "Micrositing of roof mounting wind turbine in urban environment: CFD simulations and lidar measurements," Renewable Energy, Elsevier, vol. 115(C), pages 1118-1133.
- Tabrizi, Amir Bashirzadeh & Whale, Jonathan & Lyons, Thomas & Urmee, Tania, 2014. "Performance and safety of rooftop wind turbines: Use of CFD to gain insight into inflow conditions," Renewable Energy, Elsevier, vol. 67(C), pages 242-251.
- Takaaki Kono & Tetsuya Kogaki & Takahiro Kiwata, 2016. "Numerical Investigation of Wind Conditions for Roof-Mounted Wind Turbines: Effects of Wind Direction and Horizontal Aspect Ratio of a High-Rise Cuboid Building," Energies, MDPI, vol. 9(11), pages 1-20, November.
- Juan, Yu-Hsuan & Wen, Chih-Yung & Li, Zhengtong & Yang, An-Shik, 2021. "Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays," Applied Energy, Elsevier, vol. 299(C).
- ArabGolarcheh, Alireza & Anbarsooz, Morteza & Benini, Ernesto, 2024. "An actuator line method for performance prediction of HAWTs at urban flow conditions: A case study of rooftop wind turbines," Energy, Elsevier, vol. 292(C).
- KC, Anup & Whale, Jonathan & Urmee, Tania, 2019. "Urban wind conditions and small wind turbines in the built environment: A review," Renewable Energy, Elsevier, vol. 131(C), pages 268-283.
- Bai, H.L. & Chan, C.M. & Zhu, X.M. & Li, K.M., 2019. "A numerical study on the performance of a Savonius-type vertical-axis wind turbine in a confined long channel," Renewable Energy, Elsevier, vol. 139(C), pages 102-109.
- Zhang, Shuaibin & Du, Bowen & Ge, Mingwei & Zuo, Yingtao, 2022. "Study on the operation of small rooftop wind turbines and its effect on the wind environment in blocks," Renewable Energy, Elsevier, vol. 183(C), pages 708-718.
- Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
- Xu, Wenhao & Li, Ye & Li, Gaohua & Li, Shoutu & Zhang, Chen & Wang, Fuxin, 2021. "High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part II, array of vertical axis wind turbines between buildings," Renewable Energy, Elsevier, vol. 176(C), pages 25-39.
- Hernández, Ó. Soto & Volkov, K. & Martín Mederos, A.C. & Medina Padrón, J.F. & Feijóo Lorenzo, A.E., 2015. "Power output of a wind turbine installed in an already existing viaduct," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 287-299.
- Li, Gang & Li, Yidian & Li, Jia & Huang, Huilan & Huang, Liyan, 2023. "Research on dynamic characteristics of vertical axis wind turbine extended to the outside of buildings," Energy, Elsevier, vol. 272(C).
- Tabrizi, Amir Bashirzadeh & Whale, Jonathan & Lyons, Thomas & Urmee, Tania, 2015. "Rooftop wind monitoring campaigns for small wind turbine applications: Effect of sampling rate and averaging period," Renewable Energy, Elsevier, vol. 77(C), pages 320-330.
- Anbarsooz, M. & Amiri, M., 2022. "Towards enhancing the wind energy potential at the built environment: Geometry effects of two adjacent buildings," Energy, Elsevier, vol. 239(PD).
- Liang Lu & Minyan Zhu & Haijun Wu & Jianzhong Wu, 2022. "A Review and Case Analysis on Biaxial Synchronous Loading Technology and Fast Moment-Matching Methods for Fatigue Tests of Wind Turbine Blades," Energies, MDPI, vol. 15(13), pages 1-34, July.
- Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
- Emejeamara, F.C. & Tomlin, A.S. & Millward-Hopkins, J.T., 2015. "Urban wind: Characterisation of useful gust and energy capture," Renewable Energy, Elsevier, vol. 81(C), pages 162-172.
More about this item
Keywords
Small wind turbines; IEC61400-2; Kaimal spectra; Built environment; TurbSim; FAST;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:105:y:2017:i:c:p:288-300. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.