IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v42y2012icp131-135.html
   My bibliography  Save this article

Fast pyrolysis characteristics of lignocellulosic biomass with varying reaction conditions

Author

Listed:
  • Choi, Hang Seok
  • Choi, Yeon Seok
  • Park, Hoon Chae

Abstract

A cylindrical bubbling fluidized bed reactor having 2 kg/h pyrolysis capacity was developed and using this reactor fast pyrolysis of lignocellulosic biomass was carried out to obtain biocrude oil. In the fast pyrolysis system, a commonly used spiral quenching heat exchanger with electrostatic precipitator was applied to condense volatile gases issuing from the reactor. In the present study, various experimental parameters were considered mainly to elucidate the effect of pyrolysis reaction conditions on the yield of final product such as biocrude oil, char and non-condensable gas. Hence, biomass feeding rate, biomass particle size, nitrogen flow rate, heating temperature and cooling temperature were selected for the experimental reaction conditions. As increasing the biomass feeding rate, the biocrude oil yield is increased from 54.6% to 57.8% and with increasing biomass particle size, decreased from 56.9% to 51.3%. With increasing the nitrogen flow rate, the biocrude oil yield is firstly increased from 53.9% to 54.8% and then decreased to 50.6% and the maximum biocrude oil yield is 57.0% for 500 °C. As the cooling temperature is increased, the biocrude oil yield is decreased from 55.7% to 47.9%. From the results, it was found that the bubbling condition, vapor residence time and heat transfer played an important role on the thermal conversion of biomass and its final product.

Suggested Citation

  • Choi, Hang Seok & Choi, Yeon Seok & Park, Hoon Chae, 2012. "Fast pyrolysis characteristics of lignocellulosic biomass with varying reaction conditions," Renewable Energy, Elsevier, vol. 42(C), pages 131-135.
  • Handle: RePEc:eee:renene:v:42:y:2012:i:c:p:131-135
    DOI: 10.1016/j.renene.2011.08.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111005088
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.08.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brammer, J.G. & Lauer, M. & Bridgwater, A.V., 2006. "Opportunities for biomass-derived "bio-oil" in European heat and power markets," Energy Policy, Elsevier, vol. 34(17), pages 2871-2880, November.
    2. Onay, Ozlem & Kockar, O.Mete, 2003. "Slow, fast and flash pyrolysis of rapeseed," Renewable Energy, Elsevier, vol. 28(15), pages 2417-2433.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marculescu, Cosmin & Ciuta, Simona, 2013. "Wine industry waste thermal processing for derived fuel properties improvement," Renewable Energy, Elsevier, vol. 57(C), pages 645-652.
    2. Kim, Tae Young & Lee, Seokhwan & Kang, Kernyong, 2015. "Performance and emission characteristics of a high-compression-ratio diesel engine fueled with wood pyrolysis oil-butanol blended fuels," Energy, Elsevier, vol. 93(P2), pages 2241-2250.
    3. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Ly, Hoang Vu & Lim, Dong-Hyeon & Sim, Jae Wook & Kim, Seung-Soo & Kim, Jinsoo, 2018. "Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst," Energy, Elsevier, vol. 162(C), pages 564-575.
    5. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    6. Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
    7. Yang, Youwei & Pan, Ruming & Wu, Yibo & Pan, Qinghui & Shuai, Yong, 2024. "A porous media catalyst for waste polyethylene pyrolysis in a continuous feeding reactor," Energy, Elsevier, vol. 302(C).
    8. Galadima, Ahmad & Muraza, Oki, 2014. "Biodiesel production from algae by using heterogeneous catalysts: A critical review," Energy, Elsevier, vol. 78(C), pages 72-83.
    9. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Bogdan Saletnik & Marcin Bajcar & Aneta Saletnik & Grzegorz Zaguła & Czesław Puchalski, 2021. "Effect of the Pyrolysis Process Applied to Waste Branches Biomass from Fruit Trees on the Calorific Value of the Biochar and Dust Explosivity," Energies, MDPI, vol. 14(16), pages 1-18, August.
    11. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    12. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    13. Ning Li & Jiale Zhang & Zhihe Li & Yongjun Li, 2020. "Characteristics of Aerosol Formation and Emissions During Corn Stalk Pyrolysis," Energies, MDPI, vol. 13(22), pages 1-15, November.
    14. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    15. Hu, Zhiquan & Zheng, Yang & Yan, Feng & Xiao, Bo & Liu, Shiming, 2013. "Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization," Energy, Elsevier, vol. 52(C), pages 119-125.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    2. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    3. Sulaiman, F. & Abdullah, N., 2011. "Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches," Energy, Elsevier, vol. 36(5), pages 2352-2359.
    4. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
    5. Zhang, Pengchao & Hu, Hongyun & Tang, Hua & Yang, Yuhan & Liu, Huan & Lu, Qiang & Li, Xian & Worasuwannarak, Nakorn & Yao, Hong, 2019. "In-depth experimental study of pyrolysis characteristics of raw and cooking treated shrimp shell samples," Renewable Energy, Elsevier, vol. 139(C), pages 730-738.
    6. Makkawi, Yassir & El Sayed, Yehya & Salih, Mubarak & Nancarrow, Paul & Banks, Scott & Bridgwater, Tony, 2019. "Fast pyrolysis of date palm (Phoenix dactylifera) waste in a bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 143(C), pages 719-730.
    7. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Hu, Xun & Gholizadeh, Mortaza, 2020. "Progress of the applications of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Oh, Shinyoung & Lee, Jae Hoon & Choi, Joon Weon, 2020. "Hydrodeoxygenation of crude bio-oil with various metal catalysts in a continuous-flow reactor and evaluation of emulsion properties of upgraded bio-oil with petroleum fuel," Renewable Energy, Elsevier, vol. 160(C), pages 1160-1167.
    10. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    11. Okkonen, Lasse & Lehtonen, Olli, 2017. "Local, regional and national level of the socioeconomic impacts of a bio-oil production system – A case in Lieksa, Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 103-111.
    12. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    13. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    14. Akhtar, Javaid & Saidina Amin, NorAishah, 2012. "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5101-5109.
    15. Bardhan, Soubhik K. & Gupta, Shelaka & Gorman, M.E. & Haider, M. Ali, 2015. "Biorenewable chemicals: Feedstocks, technologies and the conflict with food production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 506-520.
    16. Mishra, Asmita & Siddiqi, Hammad & Kumari, Usha & Behera, Ipsita Dipamitra & Mukherjee, Subhrajit & Meikap, B.C., 2021. "Pyrolysis of waste lubricating oil/waste motor oil to generate high-grade fuel oil: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Ni, Liangmeng & Feng, Zixing & Zhang, Tao & Gao, Qi & Hou, Yanmei & He, Yuyu & Su, Mengfu & Ren, Hao & Hu, Wanhe & Liu, Zhijia, 2022. "Effect of pyrolysis heating rates on fuel properties of molded charcoal: Imitating industrial pyrolysis process," Renewable Energy, Elsevier, vol. 197(C), pages 257-267.
    18. Colantoni, A. & Evic, N. & Lord, R. & Retschitzegger, S. & Proto, A.R. & Gallucci, F. & Monarca, D., 2016. "Characterization of biochars produced from pyrolysis of pelletized agricultural residues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 187-194.
    19. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    20. Zhang, Jiehan & Wang, Xinkun & Chen, Zhaohui & Zhang, Xinyu & Yue, Junrong & Zhou, Ridong & Lai, Dengguo & Yu, Jian & Li, Jianling & Xu, Guangwen, 2024. "Regulation of volatile reactions through thermal/catalytic cracking during scrap tires pyrolysis for high-valued chemicals production," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:42:y:2012:i:c:p:131-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.