IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i1p1-8.html
   My bibliography  Save this article

Experimental solar radiation measurements and their effectiveness in setting up a real-sky irradiance model

Author

Listed:
  • Grigiante, M.
  • Mottes, F.
  • Zardi, D.
  • de Franceschi, M.

Abstract

The present work investigates the effectiveness of an innovative procedure to calculate the global real sky irradiance of a mountain urban region, the city of Trento (Italy). The proposed methodology improves the predictive Bird’s real-sky model by introducing in it both atmospheric parameters, specifically defined for the analyzed site, and a local cloud cover factor, based on experimental data, to calculate the global real sky irradiance. The experimental data have been measured at the meteorological station of the University of Trento located in the city center. At first, a selection of the global irradiance measurements, representative of daily clear-sky conditions of each season, is presented and compared with the corresponding values obtained by the improved Bird’s clear-sky model. Making use of the improved procedure, the monthly mean daily irradiation is then calculated and compared both with experimental measurements covering the years from 2003 to 2006 and available models as well as data banks. The results, presented in terms of statistical functions, demonstrate that the generalized calculation procedures usually adopted, also available from commercial software tools, reach a satisfactory accuracy if compared with an experimental methodology approach as the one proposed in this work.

Suggested Citation

  • Grigiante, M. & Mottes, F. & Zardi, D. & de Franceschi, M., 2011. "Experimental solar radiation measurements and their effectiveness in setting up a real-sky irradiance model," Renewable Energy, Elsevier, vol. 36(1), pages 1-8.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:1:p:1-8
    DOI: 10.1016/j.renene.2010.04.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110002326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.04.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badescu, V., 2002. "3D isotropic approximation for solar diffuse irradiance on tilted surfaces," Renewable Energy, Elsevier, vol. 26(2), pages 221-233.
    2. Li, Danny H.W. & Lam, Joseph C. & Lau, Chris C.S., 2002. "A new approach for predicting vertical global solar irradiance," Renewable Energy, Elsevier, vol. 25(4), pages 591-606.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Freitas, S. & Catita, C. & Redweik, P. & Brito, M.C., 2015. "Modelling solar potential in the urban environment: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 915-931.
    2. Badescu, Viorel & Dumitrescu, Alexandru, 2014. "Simple models to compute solar global irradiance from the CMSAF product Cloud Fractional Coverage," Renewable Energy, Elsevier, vol. 66(C), pages 118-131.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riyad Mubarak & Martin Hofmann & Stefan Riechelmann & Gunther Seckmeyer, 2017. "Comparison of Modelled and Measured Tilted Solar Irradiance for Photovoltaic Applications," Energies, MDPI, vol. 10(11), pages 1-18, October.
    2. Salazar, Germán A. & Hernández, Alejandro L. & Saravia, Luis R., 2010. "Practical models to estimate horizontal irradiance in clear sky conditions: Preliminary results," Renewable Energy, Elsevier, vol. 35(11), pages 2452-2460.
    3. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "A new neural network model for evaluating the performance of various hourly slope irradiation models: Implementation for the region of Athens," Renewable Energy, Elsevier, vol. 35(7), pages 1357-1362.
    4. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Silva, C.A., 2023. "Experimental and numerical investigation of the influence of terrain slope on the performance of single-axis trackers," Applied Energy, Elsevier, vol. 348(C).
    5. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    6. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    7. Turgut Karahüseyin & Serkan Abbasoğlu, 2022. "Performance Loss Rates of a 1 MWp PV Plant with Various Tilt Angle, Orientation and Installed Environment in the Capital of Cyprus," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    8. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    9. Badescu, Viorel, 2006. "Optimum size and structure for solar energy collection systems," Energy, Elsevier, vol. 31(12), pages 1819-1835.
    10. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    11. Arias-Rosales, Andrés & LeDuc, Philip R., 2020. "Comparing View Factor modeling frameworks for the estimation of incident solar energy," Applied Energy, Elsevier, vol. 277(C).
    12. Quan, Hao & Yang, Dazhi, 2020. "Probabilistic solar irradiance transposition models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    13. Barbón, A. & Ayuso, P. Fortuny & Bayón, L. & Silva, C.A., 2021. "A comparative study between racking systems for photovoltaic power systems," Renewable Energy, Elsevier, vol. 180(C), pages 424-437.
    14. Seyed Abbas Mousavi Maleki & H. Hizam & Chandima Gomes, 2017. "Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited," Energies, MDPI, vol. 10(1), pages 1-28, January.
    15. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    16. Dengchang Ma & Guobing Pan & Fang Xu & Hongfei Sun, 2021. "Quantitative Analysis of the Impact of Meteorological Environment on Photovoltaic System Feasibility," Energies, MDPI, vol. 14(10), pages 1-16, May.
    17. Orehounig, Kristina & Dervishi, Sokol & Mahdavi, Ardeshir, 2014. "Computational derivation of irradiance on building surfaces: An empirically-based model comparison," Renewable Energy, Elsevier, vol. 71(C), pages 185-192.
    18. Demain, Colienne & Journée, Michel & Bertrand, Cédric, 2013. "Evaluation of different models to estimate the global solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 50(C), pages 710-721.
    19. Li, Danny H.W. & Cheung, Gary H.W., 2005. "Study of models for predicting the diffuse irradiance on inclined surfaces," Applied Energy, Elsevier, vol. 81(2), pages 170-186, June.
    20. Rakovec, Jože & Zakšek, Klemen, 2012. "On the proper analytical expression for the sky-view factor and the diffuse irradiation of a slope for an isotropic sky," Renewable Energy, Elsevier, vol. 37(1), pages 440-444.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:1:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.