IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i7p1537-1550.html
   My bibliography  Save this article

A computational capacity resistance model (CaRM) for vertical ground-coupled heat exchangers

Author

Listed:
  • De Carli, Michele
  • Tonon, Massimo
  • Zarrella, Angelo
  • Zecchin, Roberto

Abstract

Several models are available in literature to simulate ground heat exchangers. In this paper an approach based on electrical analogy is presented, for this reason named CaRM (CApacity Resistance Model). In some cases several information are needed during design: both the borehole and the surrounding ground are affected by thermal exchange. The model here presented allows to consider the fluid flow pattern along the classical vertical ground heat exchangers as a single U-tube, a double U-tube or coaxial pipes. Besides, ground temperature at different distances from borehole are calculated, taking into account also the thermal interference between more boreholes. Starting from the supply temperature to the heat exchanger, the outlet fluid temperature is calculated and the ground temperature in each node, step by step. The model has been validated by means of a commercial software based on the finite differences method. Further comparisons have been carried out against data from a ground thermal response test and from the survey of an office building equipped with a ground coupled heat pump and vertical double U-tube heat exchangers. The agreement of results validates the model here presented.

Suggested Citation

  • De Carli, Michele & Tonon, Massimo & Zarrella, Angelo & Zecchin, Roberto, 2010. "A computational capacity resistance model (CaRM) for vertical ground-coupled heat exchangers," Renewable Energy, Elsevier, vol. 35(7), pages 1537-1550.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:7:p:1537-1550
    DOI: 10.1016/j.renene.2009.11.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109005229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.11.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marcotte, D. & Pasquier, P., 2008. "On the estimation of thermal resistance in borehole thermal conductivity test," Renewable Energy, Elsevier, vol. 33(11), pages 2407-2415.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zanchini, Enzo & Jahanbin, Aminhossein, 2018. "Simple equations to evaluate the mean fluid temperature of double-U-tube borehole heat exchangers," Applied Energy, Elsevier, vol. 231(C), pages 320-330.
    2. Zhang, Changxing & Wang, Xinjie & Sun, Pengkun & Kong, Xiangqiang & Sun, Shicai, 2020. "Effect of depth and fluid flow rate on estimate for borehole thermal resistance of single U-pipe borehole heat exchanger," Renewable Energy, Elsevier, vol. 147(P1), pages 2399-2408.
    3. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    4. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng & Du, Yaxing, 2014. "A p(t)-linear average method to estimate the thermal parameters of the borehole heat exchangers for in situ thermal response test," Applied Energy, Elsevier, vol. 131(C), pages 211-221.
    5. Raymond, J. & Lamarche, L., 2013. "Simulation of thermal response tests in a layered subsurface," Applied Energy, Elsevier, vol. 109(C), pages 293-301.
    6. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    7. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    8. Tsubaki, Koutaro & Mitsutake, Yuichi, 2016. "Performance of ground-source heat exchangers using short residential foundation piles," Energy, Elsevier, vol. 104(C), pages 229-236.
    9. Xuedan Zhang & Tiantian Zhang & Bingxi Li & Yiqiang Jiang, 2019. "Comparison of Four Methods for Borehole Heat Exchanger Sizing Subject to Thermal Response Test Parameter Estimation," Energies, MDPI, vol. 12(21), pages 1-30, October.
    10. Zanchini, Enzo & Lazzari, Stefano & Priarone, Antonella, 2012. "Long-term performance of large borehole heat exchanger fields with unbalanced seasonal loads and groundwater flow," Energy, Elsevier, vol. 38(1), pages 66-77.
    11. Jensen-Page, Linden & Narsilio, Guillermo A. & Bidarmaghz, Asal & Johnston, Ian W., 2018. "Investigation of the effect of seasonal variation in ground temperature on thermal response tests," Renewable Energy, Elsevier, vol. 125(C), pages 609-619.
    12. Louis Lamarche & Jasmin Raymond & Claude Hugo Koubikana Pambou, 2017. "Evaluation of the Internal and Borehole Resistances during Thermal Response Tests and Impact on Ground Heat Exchanger Design," Energies, MDPI, vol. 11(1), pages 1-17, December.
    13. Cimmino, Massimo, 2016. "Fluid and borehole wall temperature profiles in vertical geothermal boreholes with multiple U-tubes," Renewable Energy, Elsevier, vol. 96(PA), pages 137-147.
    14. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
    15. Zanchini, E. & Lazzari, S., 2013. "Temperature distribution in a field of long Borehole Heat Exchangers (BHEs) subjected to a monthly averaged heat flux," Energy, Elsevier, vol. 59(C), pages 570-580.
    16. Nian, Yong-Le & Wang, Xiang-Yang & Xie, Kun & Cheng, Wen-Long, 2020. "Estimation of ground thermal properties for coaxial BHE through distributed thermal response test," Renewable Energy, Elsevier, vol. 152(C), pages 1209-1219.
    17. Hakala, Petri & Vallin, Sami & Arola, Teppo & Martinkauppi, Ilkka, 2022. "Novel use of the enhanced thermal response test in crystalline bedrock," Renewable Energy, Elsevier, vol. 182(C), pages 467-482.
    18. Pasquier, Philippe, 2018. "Interpretation of the first hours of a thermal response test using the time derivative of the temperature," Applied Energy, Elsevier, vol. 213(C), pages 56-75.
    19. Oleg Todorov & Kari Alanne & Markku Virtanen & Risto Kosonen, 2021. "Different Approaches for Evaluation and Modeling of the Effective Thermal Resistance of Groundwater-Filled Boreholes," Energies, MDPI, vol. 14(21), pages 1-25, October.
    20. Raymond, J. & Therrien, R. & Gosselin, L. & Lefebvre, R., 2011. "Numerical analysis of thermal response tests with a groundwater flow and heat transfer model," Renewable Energy, Elsevier, vol. 36(1), pages 315-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:7:p:1537-1550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.