IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i2p369-373.html
   My bibliography  Save this article

Assessment of centralized grid connected wind power cost in coastal area of Pakistan

Author

Listed:
  • Harijan, Khanji
  • Uqaili, Mohammad A.
  • Memon, Mujeebuddin
  • Mirza, Umar K.

Abstract

This work presents an assessment of per unit cost of electricity generated from 15MW wind farm at 40 locations in the coastal areas of Pakistan using the method of net present value analysis. The Nordex N43/600 wind turbine has been selected and used as reference wind turbine. Wind duration curves were developed and utilized to calculate per unit cost of electricity generated from chosen wind turbine. In Sindh province, the minimum cost of electricity generated was found to be 4.2 ¢/kWh at Jamshoro, while the corresponding maximum was 7.4 ¢/kWh at Kadhan site. In Balochistan, the minimum cost of electricity generated was found to be 6.3 ¢/kWh at Aghore, while the corresponding maximum was 21.0 ¢/kWh at Mand site. The study concludes that at most of the locations especially in Sindh province, wind power is competitive to conventional grid connected thermal power even without considering the externalities.

Suggested Citation

  • Harijan, Khanji & Uqaili, Mohammad A. & Memon, Mujeebuddin & Mirza, Umar K., 2009. "Assessment of centralized grid connected wind power cost in coastal area of Pakistan," Renewable Energy, Elsevier, vol. 34(2), pages 369-373.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:2:p:369-373
    DOI: 10.1016/j.renene.2008.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108001997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mirza, Umar K. & Ahmad, Nasir & Majeed, Tariq & Harijan, Khanji, 2007. "Wind energy development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2179-2190, December.
    2. Rehman, S & Halawani, T.O & Mohandes, M, 2003. "Wind power cost assessment at twenty locations in the kingdom of Saudi Arabia," Renewable Energy, Elsevier, vol. 28(4), pages 573-583.
    3. Bhuiyan, M.M.H & Asgar, M.Ali & Mazumder, R.K & Hussain, M, 2000. "Economic evaluation of a stand-alone residential photovoltaic power system in Bangladesh," Renewable Energy, Elsevier, vol. 21(3), pages 403-410.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farooqui, Suhail Zaki, 2014. "Prospects of renewables penetration in the energy mix of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 693-700.
    2. Watts, David & Durán, Pablo & Flores, Yarela, 2017. "How does El Niño Southern Oscillation impact the wind resource in Chile? A techno-economical assessment of the influence of El Niño and La Niña on the wind power," Renewable Energy, Elsevier, vol. 103(C), pages 128-142.
    3. Fueyo, Norberto & Sanz, Yosune & Rodrigues, Marcos & Montañés, Carlos & Dopazo, César, 2011. "The use of cost-generation curves for the analysis of wind electricity costs in Spain," Applied Energy, Elsevier, vol. 88(3), pages 733-740, March.
    4. Jingchao, Zhang & Kotani, Koji & Saijo, Tatsuyoshi, 2019. "Low-quality or high-quality coal? Household energy choice in rural Beijing," Energy Economics, Elsevier, vol. 78(C), pages 81-90.
    5. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    6. Arslan, Oguz, 2010. "Technoeconomic analysis of electricity generation from wind energy in Kutahya, Turkey," Energy, Elsevier, vol. 35(1), pages 120-131.
    7. Harijan, Khanji & Uqaili, Mohammad A. & Memon, Mujeebuddin & Mirza, Umar K., 2011. "Forecasting the diffusion of wind power in Pakistan," Energy, Elsevier, vol. 36(10), pages 6068-6073.
    8. Almansoori, Ali & Betancourt-Torcat, Alberto, 2015. "Design optimization model for the integration of renewable and nuclear energy in the United Arab Emirates’ power system," Applied Energy, Elsevier, vol. 148(C), pages 234-251.
    9. Amanullah Mengal & Katsuichiro Goda & Muhammad Ashraf & Ghulam Murtaza, 2021. "Social vulnerability to seismic-tsunami hazards in district Gwadar, Balochistan, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1159-1181, August.
    10. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2013. "Greener energy: Issues and challenges for Pakistan—wind power prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 519-538.
    11. Nansheng Pang & Mengfan Nan & Qichen Meng & Siyang Zhao, 2021. "Selection of Wind Turbine Based on Fuzzy Analytic Network Process: A Case Study in China," Sustainability, MDPI, vol. 13(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    2. Okou, R. & Sebitosi, A.B. & Pillay, P., 2011. "Flywheel rotor manufacture for rural energy storage in sub-Saharan Africa," Energy, Elsevier, vol. 36(10), pages 6138-6145.
    3. Ullah, Irfan & Chaudhry, Qamar-uz-Zaman & Chipperfield, Andrew J., 2010. "An evaluation of wind energy potential at Kati Bandar, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 856-861, February.
    4. Islam, Aminul & Chan, Eng-Seng & Taufiq-Yap, Yun Hin & Mondal, Md. Alam Hossain & Moniruzzaman, M. & Mridha, Moniruzzaman, 2014. "Energy security in Bangladesh perspective—An assessment and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 154-171.
    5. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    6. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    7. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    8. Rafique, M. Mujahid & Rehman, S., 2017. "National energy scenario of Pakistan – Current status, future alternatives, and institutional infrastructure: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 156-167.
    9. Asif, M., 2009. "Sustainable energy options for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 903-909, May.
    10. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim & Morinaga, Akane, 2013. "Determinants of user satisfaction with solar home systems in rural Bangladesh," Energy, Elsevier, vol. 61(C), pages 52-58.
    11. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    12. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    13. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    14. Khraiwish Dalabeeh, Ali S., 2017. "Techno-economic analysis of wind power generation for selected locations in Jordan," Renewable Energy, Elsevier, vol. 101(C), pages 1369-1378.
    15. Irfan, Muhammad & Iqbal, Jamshed & Iqbal, Adeel & Iqbal, Zahid & Riaz, Raja Ali & Mehmood, Adeel, 2017. "Opportunities and challenges in control of smart grids – Pakistani perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 652-674.
    16. Alam, Md. Mahbub & Rehman, Shafiqur & Meyer, Josua P. & Al-Hadhrami, Luai M., 2011. "Review of 600–2500kW sized wind turbines and optimization of hub height for maximum wind energy yield realization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3839-3849.
    17. Vieira, Filipe & Ramos, Helena M., 2009. "Optimization of operational planning for wind/hydro hybrid water supply systems," Renewable Energy, Elsevier, vol. 34(3), pages 928-936.
    18. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    19. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    20. Anwar, Javed, 2016. "Analysis of energy security, environmental emission and fuel import costs under energy import reduction targets: A case of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1065-1078.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:2:p:369-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.