IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i10p6068-6073.html
   My bibliography  Save this article

Forecasting the diffusion of wind power in Pakistan

Author

Listed:
  • Harijan, Khanji
  • Uqaili, Mohammad A.
  • Memon, Mujeebuddin
  • Mirza, Umar K.

Abstract

About half of the Pakistan’s population has no access to electricity and per capita consumption is one of the lowest in the world. The country is facing severe energy crisis due to shortage of electricity and gas supply. About two-third of the total electricity is generated from fossil fuels. Pakistan heavily depends on imported energy due to limited indigenous reserves and production of oil. The production, transportation, transformation and consumption of fossil fuels also adversely affect the quality of the environment due to indiscriminate release of toxic substances. This shows that Pakistan must develop alternate, indigenous and environment friendly energy resources, like wind energy, to face these challenges. This paper presents the market penetration forecasts of wind power in Pakistan under different policy scenarios. The diffusion of wind power is forecasted using logistic model and analogous approach. The study concludes that about 42, 58 and 73% of the country’s total technical potential of wind power generation could be exploited by the year 2030 under SS, MS and OS scenarios respectively. The development and utilization of wind power would reduce the pressure on oil imports, protect the environment from pollution and improve the socio-economic conditions of the people of Pakistan.

Suggested Citation

  • Harijan, Khanji & Uqaili, Mohammad A. & Memon, Mujeebuddin & Mirza, Umar K., 2011. "Forecasting the diffusion of wind power in Pakistan," Energy, Elsevier, vol. 36(10), pages 6068-6073.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:10:p:6068-6073
    DOI: 10.1016/j.energy.2011.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211005391
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mirza, Umar K. & Ahmad, Nasir & Majeed, Tariq & Harijan, Khanji, 2007. "Wind energy development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2179-2190, December.
    2. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    3. González, A. & McKeogh, E. & Gallachóir, B.Ó., 2004. "The role of hydrogen in high wind energy penetration electricity systems: The Irish case," Renewable Energy, Elsevier, vol. 29(4), pages 471-489.
    4. Nguyen, Khanh Q., 2008. "Internalizing externalities into capacity expansion planning: The case of electricity in Vietnam," Energy, Elsevier, vol. 33(5), pages 740-746.
    5. Rao, K. Usha & Kishore, V.V.N., 2010. "A review of technology diffusion models with special reference to renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1070-1078, April.
    6. Usha Rao, K. & Kishore, V.V.N., 2009. "Wind power technology diffusion analysis in selected states of India," Renewable Energy, Elsevier, vol. 34(4), pages 983-988.
    7. Isoard, Stephane & Soria, Antonio, 2001. "Technical change dynamics: evidence from the emerging renewable energy technologies," Energy Economics, Elsevier, vol. 23(6), pages 619-636, November.
    8. World Bank, 2006. "Pakistan Strategic Country Environmental Assessment," World Bank Publications - Reports 33928, The World Bank Group.
    9. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    10. Bhattacharya, S.C. & Jana, Chinmoy, 2009. "Renewable energy in India: Historical developments and prospects," Energy, Elsevier, vol. 34(8), pages 981-991.
    11. Purohit, Pallav, 2009. "CO2 emissions mitigation potential of solar home systems under clean development mechanism in India," Energy, Elsevier, vol. 34(8), pages 1014-1023.
    12. Harijan, Khanji & Uqaili, Mohammad A. & Memon, Mujeebuddin & Mirza, Umar K., 2009. "Assessment of centralized grid connected wind power cost in coastal area of Pakistan," Renewable Energy, Elsevier, vol. 34(2), pages 369-373.
    13. Pillai, Indu R. & Banerjee, Rangan, 2009. "Renewable energy in India: Status and potential," Energy, Elsevier, vol. 34(8), pages 970-980.
    14. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    15. Ilkan, M. & Erdil, E. & Egelioglu, F., 2005. "Renewable energy resources as an alternative to modify the load curve in Northern Cyprus," Energy, Elsevier, vol. 30(5), pages 555-572.
    16. Purohit, Pallav & Michaelowa, Axel, 2007. "CDM potential of wind power projects in India," HWWI Research Papers 1-8, Hamburg Institute of International Economics (HWWI).
    17. Lund, Peter, 2006. "Market penetration rates of new energy technologies," Energy Policy, Elsevier, vol. 34(17), pages 3317-3326, November.
    18. Carolin Mabel, M. & Fernandez, E., 2008. "Growth and future trends of wind energy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1745-1757, August.
    19. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shabbir, Noman & Usman, Muhammad & Jawad, Muhammad & Zafar, Muhammad H. & Iqbal, Muhammad N. & Kütt, Lauri, 2020. "Economic analysis and impact on national grid by domestic photovoltaic system installations in Pakistan," Renewable Energy, Elsevier, vol. 153(C), pages 509-521.
    2. Valasai, Gordhan Das & Uqaili, Muhammad Aslam & Memon, HafeezUr Rahman & Samoo, Saleem Raza & Mirjat, Nayyar Hussain & Harijan, Khanji, 2017. "Overcoming electricity crisis in Pakistan: A review of sustainable electricity options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 734-745.
    3. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea," Applied Energy, Elsevier, vol. 197(C), pages 29-39.
    4. Jingchao, Zhang & Kotani, Koji & Saijo, Tatsuyoshi, 2019. "Low-quality or high-quality coal? Household energy choice in rural Beijing," Energy Economics, Elsevier, vol. 78(C), pages 81-90.
    5. Huh, Sung-Yoon & Lee, Chul-Yong, 2014. "Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships," Energy Policy, Elsevier, vol. 69(C), pages 248-257.
    6. Sadiqa, Ayesha & Gulagi, Ashish & Breyer, Christian, 2018. "Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by 2050," Energy, Elsevier, vol. 147(C), pages 518-533.
    7. Jianbo Yang & Qunyi Liu & Xin Li & Xiandan Cui, 2017. "Overview of Wind Power in China: Status and Future," Sustainability, MDPI, vol. 9(8), pages 1-12, August.
    8. Xin-gang, Zhao & Wei, Wang & Jieying, Wang, 2022. "The policy effects of demand-pull and technology-push on the diffusion of wind power: A scenario analysis based on system dynamics approach," Energy, Elsevier, vol. 261(PA).
    9. Farooqui, Suhail Zaki, 2014. "Prospects of renewables penetration in the energy mix of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 693-700.
    10. Shaikh, Faheemullah & Ji, Qiang & Fan, Ying, 2015. "The diagnosis of an electricity crisis and alternative energy development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1172-1185.
    11. Meizhen Zhang & Tao Lv & Xu Deng & Yuanxu Dai & Muhammad Sajid, 2019. "Diffusion of China’s coal-fired power generation technologies: historical evolution and development trends," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 7-23, January.
    12. Lu, Ze-Yu & Li, Wen-Hua & Xie, Bai-Chen & Shang, Li-Feng, 2015. "Study on China’s wind power development path—Based on the target for 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 197-208.
    13. Mazhar Hussain Baloch & Dahaman Ishak & Sohaib Tahir Chaudary & Baqir Ali & Ali Asghar Memon & Touqeer Ahmed Jumani, 2019. "Wind Power Integration: An Experimental Investigation for Powering Local Communities," Energies, MDPI, vol. 12(4), pages 1-24, February.
    14. Mirjat, Nayyar Hussain & Uqaili, Mohammad Aslam & Harijan, Khanji & Valasai, Gordhan Das & Shaikh, Faheemullah & Waris, M., 2017. "A review of energy and power planning and policies of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 110-127.
    15. Rafiq Asghar & Zahid Ullah & Babar Azeem & Sheraz Aslam & Muhammad Harris Hashmi & Ehtsham Rasool & Bilawal Shaker & Muhammad Junaid Anwar & Kainat Mustafa, 2022. "Wind Energy Potential in Pakistan: A Feasibility Study in Sindh Province," Energies, MDPI, vol. 15(22), pages 1-23, November.
    16. Rashid Maqbool & Yahya Rashid & Saleha Ashfaq, 2022. "Renewable energy project success: Internal versus external stakeholders' satisfaction and influences of power‐interest matrix," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1542-1561, December.
    17. Yi, Bo-Wen & Xu, Jin-Hua & Fan, Ying, 2016. "Inter-regional power grid planning up to 2030 in China considering renewable energy development and regional pollutant control: A multi-region bottom-up optimization model," Applied Energy, Elsevier, vol. 184(C), pages 641-658.
    18. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting new and renewable energy supply through a bottom-up approach: The case of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 207-217.
    19. Shoaib Ahmed Khatri & Nayyar Hussain Mirjat & Khanji Harijan & Mohammad Aslam Uqaili & Syed Feroz Shah & Pervez Hameed Shaikh & Laveet Kumar, 2022. "An Overview of the Current Energy Situation of Pakistan and the Way Forward towards Green Energy Implementation," Energies, MDPI, vol. 16(1), pages 1-27, December.
    20. Li, Weiqing & Chien, Fengsheng & Ngo, Quang-Thanh & Nguyen, Tien-Dung & Iqbal, Sajid & Bilal, Ahmad Raza, 2021. "Vertical financial disparity, energy prices and emission reduction: Empirical insights from Pakistan," MPRA Paper 109672, University Library of Munich, Germany.
    21. Chen, Diyi & Liu, Si & Ma, Xiaoyi, 2013. "Modeling, nonlinear dynamical analysis of a novel power system with random wind power and it's control," Energy, Elsevier, vol. 53(C), pages 139-146.
    22. Xu, Jiuping & Li, Li & Zheng, Bobo, 2016. "Wind energy generation technological paradigm diffusion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 436-449.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jiuping & Li, Li & Zheng, Bobo, 2016. "Wind energy generation technological paradigm diffusion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 436-449.
    2. Huh, Sung-Yoon & Lee, Chul-Yong, 2014. "Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships," Energy Policy, Elsevier, vol. 69(C), pages 248-257.
    3. Singh, Rhythm, 2018. "Energy sufficiency aspirations of India and the role of renewable resources: Scenarios for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2783-2795.
    4. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea," Applied Energy, Elsevier, vol. 197(C), pages 29-39.
    5. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2016. "Review of barriers to the dissemination of decentralized renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 477-490.
    6. Rao, K. Usha & Kishore, V.V.N., 2010. "A review of technology diffusion models with special reference to renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1070-1078, April.
    7. Cong, Rong-Gang, 2013. "An optimization model for renewable energy generation and its application in China: A perspective of maximum utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 94-103.
    8. Lund, Peter D., 2014. "How fast can businesses in the new energy sector grow? An analysis of critical factors," Renewable Energy, Elsevier, vol. 66(C), pages 33-40.
    9. Mani, Swaminathan & Dhingra, Tarun, 2013. "Offshore wind energy policy for India—Key factors to be considered," Energy Policy, Elsevier, vol. 56(C), pages 672-683.
    10. Klingler, Anna-Lena, 2017. "Self-consumption with PV+Battery systems: A market diffusion model considering individual consumer behaviour and preferences," Applied Energy, Elsevier, vol. 205(C), pages 1560-1570.
    11. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    12. Tang, Amy & Taylor, John E. & Mahalingam, Ashwin, 2013. "Strategic structure matrix: A framework for explaining the impact of superstructure organizations on the diffusion of wind energy infrastructure," Energy Policy, Elsevier, vol. 63(C), pages 69-80.
    13. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    14. Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
    15. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    16. Radpour, S. & Gemechu, E. & Ahiduzzaman, Md & Kumar, A., 2021. "Developing a framework to assess the long-term adoption of renewable energy technologies in the electric power sector: The effects of carbon price and economic incentives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Ackah, Ishmael & Kizys, Renatas, 2015. "Green growth in oil producing African countries: A panel data analysis of renewable energy demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1157-1166.
    18. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    19. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    20. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:10:p:6068-6073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.