IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1792-d495106.html
   My bibliography  Save this article

Selection of Wind Turbine Based on Fuzzy Analytic Network Process: A Case Study in China

Author

Listed:
  • Nansheng Pang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Mengfan Nan

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Qichen Meng

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Siyang Zhao

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

Wind turbine selection is an evaluation problem involving many factors, such as technology, economy, society, etc., and there exist internal dependencies and circular relationships among these factors. This increases the complexity of the selection problem. At the same time, with the development of wind power technology, the types of wind turbines on the market are increasing. Therefore, it is necessary to establish a scientific and comprehensive evaluation system to guide the selection work. This paper extends the traditional indicator system, selecting a total of twelve evaluation indicators from three aspects: operation reliability, economy, and supplier cooperation. The selected indicators are defined in detail to clarify the relationship between them. Then the triangular fuzzy number is introduced to accurately reflect the preference information obtained from experts, and a fuzzy analytical network process (FANP) model for wind turbine unit selection is constructed by combining fuzzy preference programming (FPP) with analytic network process (ANP). In the end, a case study in China is carried out. Results show that the 2.5 W unit produced by Goldwind obtains the best comprehensive evaluation value, which is consistent with the expanding market share permanent magnet direct-drive wind turbines. This paper could provide references for future wind turbine selection questions.

Suggested Citation

  • Nansheng Pang & Mengfan Nan & Qichen Meng & Siyang Zhao, 2021. "Selection of Wind Turbine Based on Fuzzy Analytic Network Process: A Case Study in China," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1792-:d:495106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Perkin, Samuel & Garrett, Deon & Jensson, Pall, 2015. "Optimal wind turbine selection methodology: A case-study for Búrfell, Iceland," Renewable Energy, Elsevier, vol. 75(C), pages 165-172.
    2. Hu, Ssu-yuan & Cheng, Jung-ho, 2007. "Performance evaluation of pairing between sites and wind turbines," Renewable Energy, Elsevier, vol. 32(11), pages 1934-1947.
    3. Abdulrahman, Mamdouh & Wood, David, 2017. "Investigating the Power-COE trade-off for wind farm layout optimization considering commercial turbine selection and hub height variation," Renewable Energy, Elsevier, vol. 102(PB), pages 267-278.
    4. Pinar Pérez, Jesús María & García Márquez, Fausto Pedro & Tobias, Andrew & Papaelias, Mayorkinos, 2013. "Wind turbine reliability analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 463-472.
    5. Ritter, Matthias & Deckert, Lars, 2017. "Site assessment, turbine selection, and local feed-in tariffs through the wind energy index," Applied Energy, Elsevier, vol. 185(P2), pages 1087-1099.
    6. Sajid Ali & Choon-Man Jang, 2019. "Selection of Best-Suited Wind Turbines for New Wind Farm Sites Using Techno-Economic and GIS Analysis in South Korea," Energies, MDPI, vol. 12(16), pages 1-22, August.
    7. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2013. "Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions," Renewable Energy, Elsevier, vol. 52(C), pages 273-282.
    8. Song, Wenyan & Xu, Zhitao & Liu, Hu-Chen, 2017. "Developing sustainable supplier selection criteria for solar air-conditioner manufacturer: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1461-1471.
    9. Sagbansua, Lutfu & Balo, Figen, 2017. "Decision making model development in increasing wind farm energy efficiency," Renewable Energy, Elsevier, vol. 109(C), pages 354-362.
    10. Harijan, Khanji & Uqaili, Mohammad A. & Memon, Mujeebuddin & Mirza, Umar K., 2009. "Assessment of centralized grid connected wind power cost in coastal area of Pakistan," Renewable Energy, Elsevier, vol. 34(2), pages 369-373.
    11. Shafiqur Rehman & Salman A. Khan, 2016. "Fuzzy Logic Based Multi-Criteria Wind Turbine Selection Strategy—A Case Study of Qassim, Saudi Arabia," Energies, MDPI, vol. 9(11), pages 1-26, October.
    12. Dong, Yao & Wang, Jianzhou & Jiang, He & Shi, Xiaomeng, 2013. "Intelligent optimized wind resource assessment and wind turbines selection in Huitengxile of Inner Mongolia, China," Applied Energy, Elsevier, vol. 109(C), pages 239-253.
    13. Athanasios Kolios & Varvara Mytilinou & Estivaliz Lozano-Minguez & Konstantinos Salonitis, 2016. "A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs," Energies, MDPI, vol. 9(7), pages 1-21, July.
    14. Supciller, Aliye Ayca & Toprak, Fatih, 2020. "Selection of wind turbines with multi-criteria decision making techniques involving neutrosophic numbers: A case from Turkey," Energy, Elsevier, vol. 207(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zehba Raizah & Udaya Kumara Kodipalya Nanjappa & Harshitha Urs Ajjipura Shankar & Umair Khan & Sayed M. Eldin & Rajesh Kumar & Ahmed M. Galal, 2022. "Windmill Global Sourcing in an Initiative Using a Spherical Fuzzy Multiple-Criteria Decision Prototype," Energies, MDPI, vol. 15(21), pages 1-13, October.
    2. Yu, Yang & Wu, Shibo & Yu, Jianxing & Xu, Ya & Song, Lin & Xu, Weipeng, 2022. "A hybrid multi-criteria decision-making framework for offshore wind turbine selection: A case study in China," Applied Energy, Elsevier, vol. 328(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jincheng & Wang, Feng & Stelson, Kim A., 2018. "A mathematical approach to minimizing the cost of energy for large utility wind turbines," Applied Energy, Elsevier, vol. 228(C), pages 1413-1422.
    2. Shafiqur Rehman & Salman A. Khan & Luai M. Alhems, 2020. "A Rule-Based Fuzzy Logic Methodology for Multi-Criteria Selection of Wind Turbines," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    3. Shafiqur Rehman & Salman A. Khan, 2016. "Fuzzy Logic Based Multi-Criteria Wind Turbine Selection Strategy—A Case Study of Qassim, Saudi Arabia," Energies, MDPI, vol. 9(11), pages 1-26, October.
    4. A. G. Olabi & Tabbi Wilberforce & Khaled Elsaid & Tareq Salameh & Enas Taha Sayed & Khaled Saleh Husain & Mohammad Ali Abdelkareem, 2021. "Selection Guidelines for Wind Energy Technologies," Energies, MDPI, vol. 14(11), pages 1-34, June.
    5. Mamdouh Abdulrahman & David Wood, 2019. "Wind Farm Layout Upgrade Optimization," Energies, MDPI, vol. 12(13), pages 1-25, June.
    6. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    7. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Simulation based risk management for multi-objective optimal wind turbine placement using MOEA/D," Energy, Elsevier, vol. 141(C), pages 579-597.
    8. Yuanhang Qi & Peng Hou & Guisong Liu & Rongsen Jin & Zhile Yang & Guangya Yang & Zhaoyang Dong, 2021. "Cable Connection Optimization for Heterogeneous Offshore Wind Farms via a Voronoi Diagram Based Adaptive Particle Swarm Optimization with Local Search," Energies, MDPI, vol. 14(3), pages 1-21, January.
    9. Xue, Jie & Yip, Tsz Leung & Wu, Bing & Wu, Chaozhong & van Gelder, P.H.A.J.M., 2021. "A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China," Renewable Energy, Elsevier, vol. 172(C), pages 897-917.
    10. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    11. Tao, Siyu & Xu, Qingshan & Feijóo, Andrés & Zheng, Gang & Zhou, Jiemin, 2020. "Wind farm layout optimization with a three-dimensional Gaussian wake model," Renewable Energy, Elsevier, vol. 159(C), pages 553-569.
    12. Tao, Siyu & Xu, Qingshan & Feijóo, Andrés & Zheng, Gang & Zhou, Jiemin, 2020. "Nonuniform wind farm layout optimization: A state-of-the-art review," Energy, Elsevier, vol. 209(C).
    13. Wang, Longyan & Cholette, Michael E. & Zhou, Yunkai & Yuan, Jianping & Tan, Andy C.C. & Gu, Yuantong, 2018. "Effectiveness of optimized control strategy and different hub height turbines on a real wind farm optimization," Renewable Energy, Elsevier, vol. 126(C), pages 819-829.
    14. Cengiz Kahraman & Sezi Cevik Onar & Basar Oztaysi, 2016. "A Comparison of Wind Energy Investment Alternatives Using Interval-Valued Intuitionistic Fuzzy Benefit/Cost Analysis," Sustainability, MDPI, vol. 8(2), pages 1-18, January.
    15. Soukissian, Takvor H. & Karathanasi, Flora E., 2017. "On the selection of bivariate parametric models for wind data," Applied Energy, Elsevier, vol. 188(C), pages 280-304.
    16. Xu, Li & Wang, Jin & Ou, Yanxia & Fu, Yang & Bian, Xiaoyan, 2022. "A novel decision-making system for selecting offshore wind turbines with PCA and D numbers," Energy, Elsevier, vol. 258(C).
    17. Onar, Sezi Cevik & Oztaysi, Basar & Otay, İrem & Kahraman, Cengiz, 2015. "Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets," Energy, Elsevier, vol. 90(P1), pages 274-285.
    18. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    19. Serrano González, Javier & Burgos Payán, Manuel & Riquelme Santos, Jesús Manuel, 2018. "Optimal design of neighbouring offshore wind farms: A co-evolutionary approach," Applied Energy, Elsevier, vol. 209(C), pages 140-152.
    20. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1792-:d:495106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.