IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v31y2020i1p130-154.html
   My bibliography  Save this article

Potential of integrating power generation with solar thermal cooling to improve the energy efficiency in a university campus in Saudi Arabia

Author

Listed:
  • Mohannad Bayoumi

Abstract

Along with the rapid ongoing developments and expansions of the King Abdulaziz University campus, it is sensible to rethink the way electrical and cooling energy is generated and to explore methods to increase energy efficiency in the academic facilities. A conceptual energy master plan for the entire campus has been developed to achieve feasible results which require a substantial reduction in energy demand in the first place. It combines strategies at the master plan level and the micro level (case study: a single building). Establishing a correlating link between the macro and the micro level is imperative to improve the efficiency of the total system. Therefore, possibilities for centralized and decentralized (building related) energy generation have also been investigated to improve the efficiency of the total system. After outlining the general strategies for renewable energy generation on the master plan level in the university campus of King Abdulaziz University, this study explores the potential of increasing the energy efficiency of an individual building. Key energy saving actions have been simulated using IDA-ICE to assess the possibility to release the load on the shared existing and future energy infrastructure. Besides roof-integrated solar panels, the capacity of carport incorporated energy generation has also been analyzed. The results of the study indicate possible substantial savings on the current consumption of non-renewable energy resources and a combined generation of electrical energy and solar thermal cooling can lead to high coverage fraction.

Suggested Citation

  • Mohannad Bayoumi, 2020. "Potential of integrating power generation with solar thermal cooling to improve the energy efficiency in a university campus in Saudi Arabia," Energy & Environment, , vol. 31(1), pages 130-154, February.
  • Handle: RePEc:sae:engenv:v:31:y:2020:i:1:p:130-154
    DOI: 10.1177/0958305X18787271
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X18787271
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X18787271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2017. "Solar coolfacades: Framework for the integration of solar cooling technologies in the building envelope," Energy, Elsevier, vol. 137(C), pages 353-368.
    2. Drif, M. & Pérez, P.J. & Aguilera, J. & Aguilar, J.D., 2008. "A new estimation method of irradiance on a partially shaded PV generator in grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 33(9), pages 2048-2056.
    3. Michalena, Evanthie & Tripanagnostopoulos, Yiannis, 2010. "Contribution of the solar energy in the sustainable tourism development of the Mediterranean islands," Renewable Energy, Elsevier, vol. 35(3), pages 667-673.
    4. Kosorić, Vesna & Lau, Siu-Kit & Tablada, Abel & Lau, Stephen Siu-Yu, 2018. "General model of Photovoltaic (PV) integration into existing public high-rise residential buildings in Singapore – Challenges and benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 70-89.
    5. Opel, O. & Strodel, N. & Werner, K.F. & Geffken, J. & Tribel, A. & Ruck, W.K.L., 2017. "Climate-neutral and sustainable campus Leuphana University of Lueneburg," Energy, Elsevier, vol. 141(C), pages 2628-2639.
    6. Talavera, D.L. & Muñoz-Cerón, E. & de la Casa, J. & Ortega, M.J. & Almonacid, G., 2011. "Energy and economic analysis for large-scale integration of small photovoltaic systems in buildings: The case of a public location in Southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4310-4319.
    7. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    8. Lee, Jongsung & Chang, Byungik & Aktas, Can & Gorthala, Ravi, 2016. "Economic feasibility of campus-wide photovoltaic systems in New England," Renewable Energy, Elsevier, vol. 99(C), pages 452-464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shakeel, Mohammad Raghib & Mokheimer, Esmail M.A., 2022. "A techno-economic evaluation of utility scale solar power generation," Energy, Elsevier, vol. 261(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    2. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2019. "COOLFACADE: State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 395-414.
    3. Han, Kedong & Ji, Jie & Cai, Jingyong & Gao, Yuhe & Zhang, Feng & Uddin, Md Muin & Song, Zhiying, 2021. "Experimental and numerical investigation on a novel photovoltaic direct-driven ice storage air-conditioning system," Renewable Energy, Elsevier, vol. 172(C), pages 514-528.
    4. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    5. Siu-Kit Lau & Vesna Kosorić & Monika Bieri & André.M. Nobre, 2021. "Identification of Factors Influencing Development of Photovoltaic (PV) Implementation in Singapore," Sustainability, MDPI, vol. 13(5), pages 1-30, March.
    6. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    7. Boubaker, K., 2012. "Renewable energy in upper North Africa: Present versus 2025-horizon perspectives optimization using a Data Envelopment Analysis (DEA) framework," Renewable Energy, Elsevier, vol. 43(C), pages 364-369.
    8. de Jesus dos Santos Rodrigues, Marinaldo & Torres, Pedro Ferreira & Barros Galhardo, Marcos André & Chase, Otavio Andre & Monteiro, Weslley Leão & de Arimatéia Alves Vieira Filho, José & Mares, Fabríc, 2021. "A new methodology for the assessing of power losses in partially shaded SPV arrays," Energy, Elsevier, vol. 232(C).
    9. Waldemar Izdebski & Katarzyna Kosiorek, 2023. "Analysis and Evaluation of the Possibility of Electricity Production from Small Photovoltaic Installations in Poland," Energies, MDPI, vol. 16(2), pages 1, January.
    10. Yousef Alharbi & Ahmed Darwish & Xiandong Ma, 2023. "A Comprehensive Review of Distributed MPPT for Grid-Tied PV Systems at the Sub-Module Level," Energies, MDPI, vol. 16(14), pages 1-23, July.
    11. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    12. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    13. Erasmia Papallou & Martha Katafygiotou & Thomas Dimopoulos, 2024. "Emerging Sustainability Trends in Tourist Facilities: A Comparative Assessment of Multiple Hotels and Resorts," Sustainability, MDPI, vol. 16(9), pages 1-19, April.
    14. Nicole E. Statler & Amanda M. Adams & Ted C. Eckmann, 2017. "Optimizing angles of rooftop photovoltaics, ratios of solar to vegetated roof systems, and economic benefits, in Portland, Oregon, USA," Environment Systems and Decisions, Springer, vol. 37(3), pages 320-331, September.
    15. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
    16. Umberto Mecca & Paolo Piantanida & Francesco Prizzon & Manuela Rebaudengo, 2019. "Impact of Brownfield Sites on Local Energy Production as Resilient Response to Land Contamination: A Case Study in Italy," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    17. Gunther Gehlert & Marlies Wiegand & Mariya Lymar & Stefan Huusmann, 2022. "Simultaneity in Renewable Building Energy Supply—A Case Study on a Lecturing and Exhibition Building on a University Campus Located in the Cfb Climate Zone," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    18. Francesco Calise & Massimo Dentice D'Accadia & Antonio Piacentino & Maria Vicidomini, 2015. "Thermoeconomic Optimization of a Renewable Polygeneration System Serving a Small Isolated Community," Energies, MDPI, vol. 8(2), pages 1-30, January.
    19. Aliane, A. & Abboudi, S. & Seladji, C. & Guendouz, B., 2016. "An illustrated review on solar absorption cooling experimental studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 443-458.
    20. Pareek, Smita & Dahiya, Ratna, 2016. "Enhanced power generation of partial shaded photovoltaic fields by forecasting the interconnection of modules," Energy, Elsevier, vol. 95(C), pages 561-572.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:31:y:2020:i:1:p:130-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.