IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v101y2016icp146-160.html
   My bibliography  Save this article

Determination of the current–voltage characteristics of concentrator systems by using different adapted conventional techniques

Author

Listed:
  • Almonacid, Florencia
  • Rodrigo, Pedro
  • Fernández, Eduardo F.

Abstract

The modelling of the current–voltage characteristics of HCPV (high concentrator photovoltaic) modules is fundamental for the design, monitoring and energy prediction of HCPV systems and power plants. However, the modelling of these devices is inherently different and more complex than that of conventional PV (photovoltaic) modules. Because of this, considerable efforts have been done to develop models tailored to the specific features of this technology. However, there is still a lack of studies and techniques concerning the modelling of the whole I–V curve of HCPV modules. In the present work, the possibility of obtaining the I–V curve of a HCPV module by applying common methods exploited in conventional PV technology by using the effective irradiance and cell temperature is analysed. In particular, the studied methods are: the single exponential model, the Blasser's method and the bilinear interpolation method. Every method has been adapted to be entirely function of the effective irradiance and cell temperature of the concentrator. Results show that all the methods present a good performance in the estimation of the I–V curve of a concentrator, with an average RMSE (root mean square error) ranging from 1.15% to 5.23%, and an average MBE (mean bias error) close to 0%.

Suggested Citation

  • Almonacid, Florencia & Rodrigo, Pedro & Fernández, Eduardo F., 2016. "Determination of the current–voltage characteristics of concentrator systems by using different adapted conventional techniques," Energy, Elsevier, vol. 101(C), pages 146-160.
  • Handle: RePEc:eee:energy:v:101:y:2016:i:c:p:146-160
    DOI: 10.1016/j.energy.2016.01.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216300068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.01.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leloux, Jonathan & Lorenzo, Eduardo & García-Domingo, Beatriz & Aguilera, Jorge & Gueymard, Christian A., 2014. "A bankable method of assessing the performance of a CPV plant," Applied Energy, Elsevier, vol. 118(C), pages 1-11.
    2. Fernández, Eduardo F. & Almonacid, Florencia, 2014. "Spectrally corrected direct normal irradiance based on artificial neural networks for high concentrator photovoltaic applications," Energy, Elsevier, vol. 74(C), pages 941-949.
    3. Almonacid, F. & Rus, C. & Hontoria, L. & Fuentes, M. & Nofuentes, G., 2009. "Characterisation of Si-crystalline PV modules by artificial neural networks," Renewable Energy, Elsevier, vol. 34(4), pages 941-949.
    4. Rodrigo, P. & Fernández, E.F. & Almonacid, F. & Pérez-Higueras, P.J., 2014. "Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 478-488.
    5. García-Domingo, B. & Aguilera, J. & de la Casa, J. & Fuentes, M., 2014. "Modelling the influence of atmospheric conditions on the outdoor real performance of a CPV (Concentrated Photovoltaic) module," Energy, Elsevier, vol. 70(C), pages 239-250.
    6. Piliougine, Michel & Elizondo, David & Mora-López, Llanos & Sidrach-de-Cardona, Mariano, 2013. "Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules," Applied Energy, Elsevier, vol. 112(C), pages 610-617.
    7. Fernández, Eduardo F. & Almonacid, Florencia & Soria-Moya, Alberto & Terrados, Julio, 2015. "Experimental analysis of the spectral factor for quantifying the spectral influence on concentrator photovoltaic systems under real operating conditions," Energy, Elsevier, vol. 90(P2), pages 1878-1886.
    8. Cotfas, D.T. & Cotfas, P.A. & Kaplanis, S., 2013. "Methods to determine the dc parameters of solar cells: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 588-596.
    9. Fernández, Eduardo F. & Almonacid, Florencia & Garcia-Loureiro, Antonio J., 2015. "Multi-junction solar cells electrical characterization by neuronal networks under different irradiance, spectrum and cell temperature," Energy, Elsevier, vol. 90(P1), pages 846-856.
    10. Fernández, Eduardo F. & Pérez-Higueras, P. & Almonacid, F. & Ruiz-Arias, J.A. & Rodrigo, P. & Fernandez, J.I. & Luque-Heredia, I., 2015. "Model for estimating the energy yield of a high concentrator photovoltaic system," Energy, Elsevier, vol. 87(C), pages 77-85.
    11. Rodrigo, P. & Fernández, E.F. & Almonacid, F. & Pérez-Higueras, P.J., 2013. "Models for the electrical characterization of high concentration photovoltaic cells and modules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 752-760.
    12. Almonacid, F. & Fernández, E.F. & Mallick, T.K. & Pérez-Higueras, P.J., 2015. "High concentrator photovoltaic module simulation by neuronal networks using spectrally corrected direct normal irradiance and cell temperature," Energy, Elsevier, vol. 84(C), pages 336-343.
    13. Talavera, D.L. & Pérez-Higueras, P. & Ruíz-Arias, J.A. & Fernández, E.F., 2015. "Levelised cost of electricity in high concentrated photovoltaic grid connected systems: Spatial analysis of Spain," Applied Energy, Elsevier, vol. 151(C), pages 49-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peñaranda Chenche, Luz Elena & Hernandez Mendoza, Oscar Saul & Bandarra Filho, Enio Pedone, 2018. "Comparison of four methods for parameter estimation of mono- and multi-junction photovoltaic devices using experimental data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2823-2838.
    2. Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
    3. Rodrigo, P. & Velázquez, Ramiro & Fernández, Eduardo F. & Almonacid, F. & Pérez-Higueras, P.J., 2016. "Analysis of electrical mismatches in high-concentrator photovoltaic power plants with distributed inverter configurations," Energy, Elsevier, vol. 107(C), pages 374-387.
    4. Rodrigo, P.M. & Talavera, D.L. & Fernández, E.F. & Almonacid, F.M. & Pérez-Higueras, P.J., 2019. "Optimum capacity of the inverters in concentrator photovoltaic power plants with emphasis on shading impact," Energy, Elsevier, vol. 187(C).
    5. Nofuentes, Gustavo & de la Casa, Juan & Solís-Alemán, Ernesto M. & Fernández, Eduardo F., 2017. "Spectral impact on PV performance in mid-latitude sunny inland sites: Experimental vs. modelled results," Energy, Elsevier, vol. 141(C), pages 1857-1868.
    6. Manuel Cáceres & Andrés Firman & Jesús Montes-Romero & Alexis Raúl González Mayans & Luis Horacio Vera & Eduardo F. Fernández & Juan de la Casa Higueras, 2020. "Low-Cost I–V Tracer for PV Modules under Real Operating Conditions," Energies, MDPI, vol. 13(17), pages 1-17, August.
    7. Khan, Firoz & Al-Ahmed, Amir & Al-Sulaiman, Fahad A., 2021. "Critical analysis of the limitations and validity of the assumptions with the analytical methods commonly used to determine the photovoltaic cell parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
    2. Fernández, Eduardo F. & Talavera, D.L. & Almonacid, Florencia M. & Smestad, Greg P., 2016. "Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems," Energy, Elsevier, vol. 106(C), pages 790-801.
    3. Almonacid, F. & Fernández, E.F. & Mallick, T.K. & Pérez-Higueras, P.J., 2015. "High concentrator photovoltaic module simulation by neuronal networks using spectrally corrected direct normal irradiance and cell temperature," Energy, Elsevier, vol. 84(C), pages 336-343.
    4. Manuel Angel Gadeo-Martos & Antonio Jesús Yuste-Delgado & Florencia Almonacid Cruz & Jose-Angel Fernandez-Prieto & Joaquin Canada-Bago, 2019. "Modeling a High Concentrator Photovoltaic Module Using Fuzzy Rule-Based Systems," Energies, MDPI, vol. 12(3), pages 1-22, February.
    5. Fernández, Eduardo F. & Almonacid, Florencia & Garcia-Loureiro, Antonio J., 2015. "Multi-junction solar cells electrical characterization by neuronal networks under different irradiance, spectrum and cell temperature," Energy, Elsevier, vol. 90(P1), pages 846-856.
    6. Fernández, Eduardo F. & Almonacid, Florencia & Soria-Moya, Alberto & Terrados, Julio, 2015. "Experimental analysis of the spectral factor for quantifying the spectral influence on concentrator photovoltaic systems under real operating conditions," Energy, Elsevier, vol. 90(P2), pages 1878-1886.
    7. Chen, Zhicong & Yu, Hui & Luo, Linlu & Wu, Lijun & Zheng, Qiao & Wu, Zhenhui & Cheng, Shuying & Lin, Peijie, 2021. "Rapid and accurate modeling of PV modules based on extreme learning machine and large datasets of I-V curves," Applied Energy, Elsevier, vol. 292(C).
    8. Talavera, D.L. & Pérez-Higueras, P. & Almonacid, F. & Fernández, E.F., 2017. "A worldwide assessment of economic feasibility of HCPV power plants: Profitability and competitiveness," Energy, Elsevier, vol. 119(C), pages 408-424.
    9. Fernández, Eduardo F. & Almonacid, Florencia, 2014. "Spectrally corrected direct normal irradiance based on artificial neural networks for high concentrator photovoltaic applications," Energy, Elsevier, vol. 74(C), pages 941-949.
    10. Rodrigo, P. & Velázquez, Ramiro & Fernández, Eduardo F. & Almonacid, F. & Pérez-Higueras, P.J., 2016. "Analysis of electrical mismatches in high-concentrator photovoltaic power plants with distributed inverter configurations," Energy, Elsevier, vol. 107(C), pages 374-387.
    11. Fernández, Eduardo F. & Pérez-Higueras, P. & Almonacid, F. & Ruiz-Arias, J.A. & Rodrigo, P. & Fernandez, J.I. & Luque-Heredia, I., 2015. "Model for estimating the energy yield of a high concentrator photovoltaic system," Energy, Elsevier, vol. 87(C), pages 77-85.
    12. Rodrigo, P.M. & Talavera, D.L. & Fernández, E.F. & Almonacid, F.M. & Pérez-Higueras, P.J., 2019. "Optimum capacity of the inverters in concentrator photovoltaic power plants with emphasis on shading impact," Energy, Elsevier, vol. 187(C).
    13. Benhammane, Mousaab & Notton, Gilles & Pichenot, Grégoire & Voarino, Philippe & Ouvrard, David, 2021. "Overview of electrical power models for concentrated photovoltaic systems and development of a new operational model with easily accessible inputs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    15. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    16. Renzi, M. & Egidi, L. & Comodi, G., 2015. "Performance analysis of two 3.5kWp CPV systems under real operating conditions," Applied Energy, Elsevier, vol. 160(C), pages 687-696.
    17. García-Domingo, B. & Piliougine, M. & Elizondo, D. & Aguilera, J., 2015. "CPV module electric characterisation by artificial neural networks," Renewable Energy, Elsevier, vol. 78(C), pages 173-181.
    18. Aqachmar, Zineb & Campana, Pietro Elia & Bouhal, Tarik & El Qarnia, Hamid & Outzourhit, Abdelkader & Alami Ibnouelghazi, El & Mouak, Said & Aqachmar, Atman, 2022. "Electrification of Africa through CPV installations in small-scale industrial applications: Energetic, economic, and environmental analysis," Renewable Energy, Elsevier, vol. 197(C), pages 723-746.
    19. Said, Mohamed Islam & Steiner, Marc & Siefer, Gerald & Arab, Amar Hadj, 2020. "Maximum power output prediction of HCPV FLATCON® module using an ANN approach," Renewable Energy, Elsevier, vol. 152(C), pages 1274-1283.
    20. Torres-Ramírez, M. & Elizondo, D. & García-Domingo, B. & Nofuentes, G. & Talavera, D.L., 2015. "Modelling the spectral irradiance distribution in sunny inland locations using an ANN-based methodology," Energy, Elsevier, vol. 86(C), pages 323-334.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:101:y:2016:i:c:p:146-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.