IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15810-d986365.html
   My bibliography  Save this article

Effect of Temperature and Wind Speed on Efficiency of Five Photovoltaic Module Technologies for Different Climatic Zones

Author

Listed:
  • Zia R. Tahir

    (Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Ammara Kanwal

    (Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Muhammad Asim

    (Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan)

  • M. Bilal

    (Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Muhammad Abdullah

    (Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Sabeena Saleem

    (Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan)

  • M. A. Mujtaba

    (Faculty of Mechanical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Ibham Veza

    (Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia)

  • Mohamed Mousa

    (Electrical Engineering, Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11845, Egypt)

  • M. A. Kalam

    (School of Civil and Environmental Engineering, FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia)

Abstract

The objective of this study is to investigate the effect of temperature and wind speed on the performance of five photovoltaic (PV) module technologies for different climatic zones of Pakistan. The PV module technologies selected were mono-crystalline silicon (MC); poly-crystalline silicon (PC); heterogeneous intrinsic thin-film (TFH); copper–indium–allium–selenide (TFC); and thin-film amorphous silicon (TFA). The module temperature and actual efficiency were calculated using measured data for one year. The actual efficiency of MC, PC, TFH, TFC, and TFA decreases by 3.4, 3.1, 2.2, 3.7, and 2.7%, respectively, considering the effect of temperature only. The actual efficiency of MC, PC, TFH, TFC, and TFA increases by 9.7, 9.0, 6.5, 9.5, and 7.0% considering the effect of both temperature and wind speed. The TFH module is the most efficient (20.76%) and TFC is the least efficient (16.79%) among the five materials. Under the effect of temperature, the actual efficiency of TFH is the least affected while the efficiency of TFC is the most affected. The actual efficiency of MC is the most affected and that of TFH is the least affected under the combined effect of wind speed and temperature. The performance ratio of TFC is the most affected and that of TFH is the least affected under the effect of temperature and the combined effect of temperature and wind speed. The performance of PV technology, under real outdoor conditions, does not remain the same due to environmental stresses (solar irradiance, ambient temperature, and wind speed). This study plays an important role in quantifying the long-term behavior of PV modules in the field, hence identifying specific technology for the PV industry in suitable climatic conditions.

Suggested Citation

  • Zia R. Tahir & Ammara Kanwal & Muhammad Asim & M. Bilal & Muhammad Abdullah & Sabeena Saleem & M. A. Mujtaba & Ibham Veza & Mohamed Mousa & M. A. Kalam, 2022. "Effect of Temperature and Wind Speed on Efficiency of Five Photovoltaic Module Technologies for Different Climatic Zones," Sustainability, MDPI, vol. 14(23), pages 1-32, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15810-:d:986365
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15810/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15810/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gxasheka, A.R. & van Dyk, E.E. & Meyer, E.L., 2005. "Evaluation of performance parameters of PV modules deployed outdoors," Renewable Energy, Elsevier, vol. 30(4), pages 611-620.
    2. Muhammad Asim & Adnan Qamar & Ammara Kanwal & Ghulam Moeen Uddin & Muhammad Mujtaba Abbas & Muhammad Farooq & M. A. Kalam & Mohamed Mousa & Kiran Shahapurkar, 2022. "Opportunities and Challenges for Renewable Energy Utilization in Pakistan," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
    3. Alonso García, M.C. & Balenzategui, J.L., 2004. "Estimation of photovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations," Renewable Energy, Elsevier, vol. 29(12), pages 1997-2010.
    4. Muhammad Asim & Muhammad Usman & Muhammad Salman Abbasi & Saad Ahmad & M. A. Mujtaba & Manzoore Elahi M. Soudagar & Abdullah Mohamed, 2022. "Estimating the Long-Term Effects of National and International Sustainable Transport Policies on Energy Consumption and Emissions of Road Transport Sector of Pakistan," Sustainability, MDPI, vol. 14(9), pages 1-19, May.
    5. Abdallah, Amir & Martinez, Diego & Figgis, Benjamin & El Daif, Ounsi, 2016. "Performance of Silicon Heterojunction Photovoltaic modules in Qatar climatic conditions," Renewable Energy, Elsevier, vol. 97(C), pages 860-865.
    6. Tossa, Alain K. & Soro, Y.M. & Thiaw, L. & Azoumah, Y. & Sicot, Lionel & Yamegueu, D. & Lishou, Claude & Coulibaly, Y. & Razongles, Guillaume, 2016. "Energy performance of different silicon photovoltaic technologies under hot and harsh climate," Energy, Elsevier, vol. 103(C), pages 261-270.
    7. Mattei, M. & Notton, G. & Cristofari, C. & Muselli, M. & Poggi, P., 2006. "Calculation of the polycrystalline PV module temperature using a simple method of energy balance," Renewable Energy, Elsevier, vol. 31(4), pages 553-567.
    8. Kaldellis, John K. & Kapsali, Marina & Kavadias, Kosmas A., 2014. "Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece," Renewable Energy, Elsevier, vol. 66(C), pages 612-624.
    9. Pérez, Juan C. & González, Albano & Díaz, Juan P. & Expósito, Francisco J. & Felipe, Jonatan, 2019. "Climate change impact on future photovoltaic resource potential in an orographically complex archipelago, the Canary Islands," Renewable Energy, Elsevier, vol. 133(C), pages 749-759.
    10. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    11. Aliashim Albani & Mohd Zamri Ibrahim, 2017. "Wind Energy Potential and Power Law Indexes Assessment for Selected Near-Coastal Sites in Malaysia," Energies, MDPI, vol. 10(3), pages 1-21, March.
    12. Agata Zdyb & Slawomir Gulkowski, 2020. "Performance Assessment of Four Different Photovoltaic Technologies in Poland," Energies, MDPI, vol. 13(1), pages 1-17, January.
    13. Thomas Huld & Ana M. Gracia Amillo, 2015. "Estimating PV Module Performance over Large Geographical Regions: The Role of Irradiance, Air Temperature, Wind Speed and Solar Spectrum," Energies, MDPI, vol. 8(6), pages 1-23, June.
    14. Zhou, Jicheng & Zhang, Zhe & Ke, Haoyun, 2019. "PV module temperature distribution with a novel segmented solar cell absorbance model," Renewable Energy, Elsevier, vol. 134(C), pages 1071-1080.
    15. Hosseini, Seyyed Ahmad & Kermani, Ali M. & Arabhosseini, Akbar, 2019. "Experimental study of the dew formation effect on the performance of photovoltaic modules," Renewable Energy, Elsevier, vol. 130(C), pages 352-359.
    16. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    17. Cristina S. Polo López & Elena Lucchi & Eleonora Leonardi & Antonello Durante & Anne Schmidt & Roger Curtis, 2021. "Risk-Benefit Assessment Scheme for Renewable Solar Solutions in Traditional and Historic Buildings," Sustainability, MDPI, vol. 13(9), pages 1-35, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kapsalis, Vasileios & Maduta, Carmen & Skandalos, Nikolaos & Wang, Meng & Bhuvad, Sushant Suresh & D'Agostino, Delia & Ma, Tao & Raj, Uday & Parker, Danny & Peng, Jinqing & Karamanis, Dimitris, 2024. "Critical assessment of large-scale rooftop photovoltaics deployment in the global urban environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Muhammad Asim & Muhammad Hanzla Tahir & Ammara Kanwal & Fahid Riaz & Muhammad Amjad & Aamna Khalid & Muhammad Mujtaba Abbas & Ashfaq Ahmad & Mohammad Abul Kalam, 2023. "Effects of Varying Volume Fractions of SiO 2 and Al 2 O 3 on the Performance of Concentrated Photovoltaic System," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    3. Xiaofei Li & Zhao Wang & Yinnan Liu & Haifeng Wang & Liusheng Pei & An Wu & Shuang Sun & Yongjun Lian & Honglu Zhu, 2023. "A Novel Operating State Evaluation Method for Photovoltaic Strings Based on TOPSIS and Its Application," Sustainability, MDPI, vol. 15(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaplanis, S. & Kaplani, E. & Kaldellis, J.K., 2022. "PV temperature and performance prediction in free-standing, BIPV and BAPV incorporating the effect of temperature and inclination on the heat transfer coefficients and the impact of wind, efficiency a," Renewable Energy, Elsevier, vol. 181(C), pages 235-249.
    2. Chikh, Madjid & Berkane, Smain & Mahrane, Achour & Sellami, Rabah & Yassaa, Noureddine, 2021. "Performance assessment of a 400 kWp multi- technology photovoltaic grid-connected pilot plant in arid region of Algeria," Renewable Energy, Elsevier, vol. 172(C), pages 488-501.
    3. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    4. Muhammad Asim & Jassinnee Milano & Hassan Izhar Khan & Muhammad Hanzla Tahir & M. A. Mujtaba & Abd Halim Shamsuddin & Muhammad Abdullah & M. A. Kalam, 2022. "Investigation of Mono-Crystalline Photovoltaic Active Cooling Thermal System for Hot Climate of Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    5. Santiago, I. & Trillo-Montero, D. & Moreno-Garcia, I.M. & Pallarés-López, V. & Luna-Rodríguez, J.J., 2018. "Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 70-89.
    6. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2020. "Field Analysis of three different silicon-based Technologies in Composite Climate Condition – Part II – Seasonal assessment and performance degradation rates using statistical tools," Renewable Energy, Elsevier, vol. 147(P1), pages 2102-2117.
    7. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    8. Balaska, Amira & Tahri, Ali & Tahri, Fatima & Stambouli, Amine Boudghene, 2017. "Performance assessment of five different photovoltaic module technologies under outdoor conditions in Algeria," Renewable Energy, Elsevier, vol. 107(C), pages 53-60.
    9. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    10. Trinuruk, Piyatida & Sorapipatana, Chumnong & Chenvidhya, Dhirayut, 2009. "Estimating operating cell temperature of BIPV modules in Thailand," Renewable Energy, Elsevier, vol. 34(11), pages 2515-2523.
    11. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    12. D'Orazio, M. & Di Perna, C. & Di Giuseppe, E., 2014. "Experimental operating cell temperature assessment of BIPV with different installation configurations on roofs under Mediterranean climate," Renewable Energy, Elsevier, vol. 68(C), pages 378-396.
    13. Ali Kareem Abdulrazzaq & Balázs Plesz & György Bognár, 2020. "A Novel Method for Thermal Modelling of Photovoltaic Modules/Cells under Varying Environmental Conditions," Energies, MDPI, vol. 13(13), pages 1-23, June.
    14. Carrero, C. & Amador, J. & Arnaltes, S., 2007. "A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances," Renewable Energy, Elsevier, vol. 32(15), pages 2579-2589.
    15. Yujing Sun & Fei Wang & Bo Wang & Qifang Chen & N.A. Engerer & Zengqiang Mi, 2016. "Correlation Feature Selection and Mutual Information Theory Based Quantitative Research on Meteorological Impact Factors of Module Temperature for Solar Photovoltaic Systems," Energies, MDPI, vol. 10(1), pages 1-20, December.
    16. Eldin, S.A. Sharaf & Abd-Elhady, M.S. & Kandil, H.A., 2016. "Feasibility of solar tracking systems for PV panels in hot and cold regions," Renewable Energy, Elsevier, vol. 85(C), pages 228-233.
    17. Gracia-Amillo, Ana M. & Bardizza, Giorgio & Salis, Elena & Huld, Thomas & Dunlop, Ewan D., 2018. "Energy-based metric for analysis of organic PV devices in comparison with conventional industrial technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 76-89.
    18. Pantic, Lana S. & Pavlović, Tomislav M. & Milosavljević, Dragana D. & Radonjic, Ivana S. & Radovic, Miodrag K. & Sazhko, Galina, 2016. "The assessment of different models to predict solar module temperature, output power and efficiency for Nis, Serbia," Energy, Elsevier, vol. 109(C), pages 38-48.
    19. Docimo, D.J. & Ghanaatpishe, M. & Mamun, A., 2017. "Extended Kalman Filtering to estimate temperature and irradiation for maximum power point tracking of a photovoltaic module," Energy, Elsevier, vol. 120(C), pages 47-57.
    20. Bouraiou, Ahmed & Hamouda, Messaoud & Chaker, Abdelkader & Lachtar, Salah & Neçaibia, Ammar & Boutasseta, Nadir & Mostefaoui, Mohammed, 2017. "Experimental evaluation of the performance and degradation of single crystalline silicon photovoltaic modules in the Saharan environment," Energy, Elsevier, vol. 132(C), pages 22-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15810-:d:986365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.