IDEAS home Printed from https://ideas.repec.org/a/caa/jnlrae/v60y2014i2id33-2010-rae.html
   My bibliography  Save this article

Technical possibilities of the cutting oils filtration residues combustion

Author

Listed:
  • M. Pešek

    (Department of Technological Equipment of Buildings, Faculty of Engineering, Czech University of Life Science Prague, Prague, Czech Republic)

  • M. Přikryl

    (Department of Technological Equipment of Buildings, Faculty of Engineering, Czech University of Life Science Prague, Prague, Czech Republic)

Abstract

The value of consumption share of electricity from renewable sources in the Czech Republic up to 8% in 2010 stems from an individual obligation adopted by the Czech Republic when signing the Kyoto Protocol of the United Nations Framework Convention on Climate Change. One of the possibilities how to reduce greenhouse gases emissions from fossil fuels consists in biomass burning. Biomass used for power purposes is obtained on purpose as a result of production activities or it originates from utilization of wastes from agricultural, forest and industrial production. In biomass burning, the boiler used produces carbon dioxide, recyclable in nature. Increase of the amount of municipal and technological waste including materials that are heavily soiled and difficult to recycle pushed up demand to obtain the best possible solutions in terms of both technological and economic terms. Recycling of materials can provide multiple circulations which have to lead to final solution such as storage or use in energy production. One of the solutions shall consist in recommending the installation of the sorting line, the homogenizer, and possibly a pelletizer to ensure sufficient homogeneity of the material.

Suggested Citation

  • M. Pešek & M. Přikryl, 2014. "Technical possibilities of the cutting oils filtration residues combustion," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 60(2), pages 45-49.
  • Handle: RePEc:caa:jnlrae:v:60:y:2014:i:2:id:33-2010-rae
    DOI: 10.17221/33/2010-RAE
    as

    Download full text from publisher

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/33/2010-RAE.html
    Download Restriction: free of charge

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/33/2010-RAE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/33/2010-RAE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Narayanan, K.V. & Natarajan, E., 2007. "Experimental studies on cofiring of coal and biomass blends in India," Renewable Energy, Elsevier, vol. 32(15), pages 2548-2558.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wander, Paulo R. & Bianchi, Flávio M. & Caetano, Nattan R. & Klunk, Marcos A. & Indrusiak, Maria Luiza S., 2020. "Cofiring low-rank coal and biomass in a bubbling fluidized bed with varying excess air ratio and fluidization velocity," Energy, Elsevier, vol. 203(C).
    2. Niklas Vahlne & Erik O. Ahlgren, 2014. "Energy Efficiency at the Base of the Pyramid: A System-Based Market Model for Improved Cooking Stove Adoption," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
    3. Mao, Guozhu & Liu, Xi & Du, Huibin & Zuo, Jian & Wang, Linyuan, 2015. "Way forward for alternative energy research: A bibliometric analysis during 1994–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 276-286.
    4. Ghafghazi, S. & Sowlati, T. & Sokhansanj, S. & Bi, X. & Melin, S., 2011. "Particulate matter emissions from combustion of wood in district heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3019-3028, August.
    5. Restrepo, Álvaro & Bazzo, Edson, 2016. "Co-firing: An exergoenvironmental analysis applied to power plants modified for burning coal and rice straw," Renewable Energy, Elsevier, vol. 91(C), pages 107-119.
    6. Angelika Więckol-Ryk & Alicja Krzemień & Adam Smoliński & Fernando Sánchez Lasheras, 2018. "Analysis of Biomass Blend Co-Firing for Post Combustion CO 2 Capture," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
    7. Yao, Xiwen & Zhou, Haodong & Xu, Kaili & Chen, Shoukun & Ge, Ji & Xu, Qingwei, 2020. "Systematic study on ash transformation behaviour and thermal kinetic characteristics during co-firing of biomass with high ratios of bituminous coal," Renewable Energy, Elsevier, vol. 147(P1), pages 1453-1468.
    8. Nwamo R.D. & Ajonina G.N. & Pride Ndasi Ngwasiri & Besack F. & Moudingo E.J-H., 2022. "Problems of Invasive Species of Water Hyacinth (Eichhornia Crassipes [Mart.] Solms) in Cameroon with Special Reference to Its Eradication and Valorization: A Bibliographical Review," Energy and Environment Research, Canadian Center of Science and Education, vol. 12(1), pages 1-56, June.
    9. Rezania, Shahabaldin & Md Din, Mohd Fadhil & Kamaruddin, Siti Fatimah & Taib, Shazwin Mat & Singh, Lakhveer & Yong, Ee Ling & Dahalan, Farrah Aini, 2016. "Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production," Energy, Elsevier, vol. 111(C), pages 768-773.
    10. Tao, Guangcan & Lestander, Torbjörn A. & Geladi, Paul & Xiong, Shaojun, 2012. "Biomass properties in association with plant species and assortments I: A synthesis based on literature data of energy properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3481-3506.
    11. Kalembkiewicz, Jan & Chmielarz, Urszula, 2012. "Ashes from co-combustion of coal and biomass: New industrial wastes," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 109-121.
    12. Masami Ashizawa & Maromu Otaka & Hiromi Yamamoto & Atsushi Akisawa, 2022. "CO 2 Emissions and Economy of Co-Firing Carbonized Wood Pellets at Coal-Fired Power Plants: The Case of Overseas Production of Pellets and Use in Japan," Energies, MDPI, vol. 15(5), pages 1-10, February.
    13. Xu, Jiuping & Huang, Qian & Lv, Chengwei & Feng, Qing & Wang, Fengjuan, 2018. "Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing," Energy Policy, Elsevier, vol. 123(C), pages 184-197.
    14. Verma, Munna & Loha, Chanchal & Sinha, Amar Nath & Chatterjee, Pradip Kumar, 2017. "Drying of biomass for utilising in co-firing with coal and its impact on environment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 732-741.
    15. Rezania, Shahabaldin & Ponraj, Mohanadoss & Din, Mohd Fadhil Md & Songip, Ahmad Rahman & Sairan, Fadzlin Md & Chelliapan, Shreeshivadasan, 2015. "The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 943-954.
    16. Bui, Mai & Fajardy, Mathilde & Mac Dowell, Niall, 2017. "Bio-Energy with CCS (BECCS) performance evaluation: Efficiency enhancement and emissions reduction," Applied Energy, Elsevier, vol. 195(C), pages 289-302.
    17. Sahu, S.G. & Chakraborty, N. & Sarkar, P., 2014. "Coal–biomass co-combustion: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 575-586.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlrae:v:60:y:2014:i:2:id:33-2010-rae. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.