IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v31y2006i9p1371-1389.html
   My bibliography  Save this article

Solar absorption cooling in Spain: Perspectives and outcomes from the simulation of recent installations

Author

Listed:
  • García Casals, Xavier

Abstract

In spite of the fact that Spain is one of the EU countries with the highest solar resource on annual basis, the huge seasonal variation in solar radiation availability and the relatively short period with heating demand, make it difficult to reach significant contributions of solar energy to the buildings heating energy demand. This compromises the economic viability of big solar collector areas per capita, and introduces technical difficulties for the dissipation of the excess solar energy available in the summer months. On the other hand, in a large part of the Spanish territory, in other to reach adequate comfort conditions in our buildings, the energy demand for cooling is more important or of the same order than the heating demand. Cooling energy demand is now experiencing a fast growing rate as this comfort requirement becomes internalized. Domestic air conditioning equipments based on vapour compression cycles are being used to reach comfort conditions in some of the rooms of buildings that were designed without taking into account cooling requirements. In spite of their so far small contribution to the total building sector energy demand, these equipments are already imposing important constraints on the environment and the electricity distribution system. Solar absorption cooling arises as an interesting alternative, which at the same time allows reaching a higher solar contribution to the heating demand. However, solar cooling installations present several peculiarities with respect to the more known DHW or even heating installations, which require to incorporate a more detailed approach and additional considerations in the design and performance evaluation processes. Besides, some limitations still persist in solar absorption systems, which could make them loose their market potential for the benefit of other solar cooling options. In this paper, we present some conclusions arising from the experience gained in detailed TRNSYS dynamical simulation of some of the first commercial solar heating and cooling installations recently implemented in Spain, and analyse their perspectives in comparison with other solar cooling options.

Suggested Citation

  • García Casals, Xavier, 2006. "Solar absorption cooling in Spain: Perspectives and outcomes from the simulation of recent installations," Renewable Energy, Elsevier, vol. 31(9), pages 1371-1389.
  • Handle: RePEc:eee:renene:v:31:y:2006:i:9:p:1371-1389
    DOI: 10.1016/j.renene.2005.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148105001783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghaddar, N.K. & Shihab, M. & Bdeir, F., 1997. "Modeling and simulation of solar absorption system performance in Beirut," Renewable Energy, Elsevier, vol. 10(4), pages 539-558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhai, X.Q. & Qu, M. & Li, Yue. & Wang, R.Z., 2011. "A review for research and new design options of solar absorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4416-4423.
    2. Rosiek, S. & Batlles, F.J., 2009. "Integration of the solar thermal energy in the construction: Analysis of the solar-assisted air-conditioning system installed in CIESOL building," Renewable Energy, Elsevier, vol. 34(6), pages 1423-1431.
    3. Gebreslassie, Berhane H. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Boer, Dieter, 2010. "A systematic tool for the minimization of the life cycle impact of solar assisted absorption cooling systems," Energy, Elsevier, vol. 35(9), pages 3849-3862.
    4. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    5. Jaruwongwittaya, Tawatchai & Chen, Guangming, 2010. "A review: Renewable energy with absorption chillers in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1437-1444, June.
    6. Hang, Yin & Du, Lili & Qu, Ming & Peeta, Srinivas, 2013. "Multi-objective optimization of integrated solar absorption cooling and heating systems for medium-sized office buildings," Renewable Energy, Elsevier, vol. 52(C), pages 67-78.
    7. Chidambaram, L.A. & Ramana, A.S. & Kamaraj, G. & Velraj, R., 2011. "Review of solar cooling methods and thermal storage options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3220-3228, August.
    8. Buonomano, A. & Calise, F. & Palombo, A., 2013. "Solar heating and cooling systems by CPVT and ET solar collectors: A novel transient simulation model," Applied Energy, Elsevier, vol. 103(C), pages 588-606.
    9. Zhai, X.Q. & Wang, R.Z., 2009. "A review for absorbtion and adsorbtion solar cooling systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1523-1531, August.
    10. Lubis, Arnas & Jeong, Jongsoo & Giannetti, Niccolo & Yamaguchi, Seiichi & Saito, Kiyoshi & Yabase, Hajime & Alhamid, Muhammad I. & Nasruddin,, 2018. "Operation performance enhancement of single-double-effect absorption chiller," Applied Energy, Elsevier, vol. 219(C), pages 299-311.
    11. Zhai, X.Q. & Wang, R.Z., 2010. "Experimental investigation and performance analysis on a solar adsorption cooling system with/without heat storage," Applied Energy, Elsevier, vol. 87(3), pages 824-835, March.
    12. Cabrera, F.J. & Fernández-García, A. & Silva, R.M.P. & Pérez-García, M., 2013. "Use of parabolic trough solar collectors for solar refrigeration and air-conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 103-118.
    13. Wang, R.Z. & Zhai, X.Q., 2010. "Development of solar thermal technologies in China," Energy, Elsevier, vol. 35(11), pages 4407-4416.
    14. Dinçer, Furkan, 2011. "The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 713-720, January.
    15. Praene, Jean Philippe & Marc, Olivier & Lucas, Franck & Miranville, Frédéric, 2011. "Simulation and experimental investigation of solar absorption cooling system in Reunion Island," Applied Energy, Elsevier, vol. 88(3), pages 831-839, March.
    16. Calise, Francesco & Dentice d'Accadia, Massimo & Palombo, Adolfo & Vanoli, Laura, 2013. "Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors," Energy, Elsevier, vol. 61(C), pages 72-86.
    17. Adil Al-Falahi & Falah Alobaid & Bernd Epple, 2020. "Design and Thermo-Economic Comparisons of an Absorption Air Conditioning System Based on Parabolic Trough and Evacuated Tube Solar Collectors," Energies, MDPI, vol. 13(12), pages 1-27, June.
    18. Calise, Francesco & Ferruzzi, Gabriele & Vanoli, Laura, 2012. "Transient simulation of polygeneration systems based on PEM fuel cells and solar heating and cooling technologies," Energy, Elsevier, vol. 41(1), pages 18-30.
    19. Mokhtar, Marwan & Ali, Muhammad Tauha & Bräuniger, Simon & Afshari, Afshin & Sgouridis, Sgouris & Armstrong, Peter & Chiesa, Matteo, 2010. "Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data," Applied Energy, Elsevier, vol. 87(12), pages 3766-3778, December.
    20. Hang, Yin & Qu, Ming & Zhao, Fu, 2011. "Economical and environmental assessment of an optimized solar cooling system for a medium-sized benchmark office building in Los Angeles, California," Renewable Energy, Elsevier, vol. 36(2), pages 648-658.
    21. Shirazi, Ali & Taylor, Robert A. & White, Stephen D. & Morrison, Graham L., 2016. "Transient simulation and parametric study of solar-assisted heating and cooling absorption systems: An energetic, economic and environmental (3E) assessment," Renewable Energy, Elsevier, vol. 86(C), pages 955-971.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camelia Stanciu & Dorin Stanciu & Adina-Teodora Gheorghian, 2017. "Thermal Analysis of a Solar Powered Absorption Cooling System with Fully Mixed Thermal Storage at Startup," Energies, MDPI, vol. 10(1), pages 1-19, January.
    2. Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.
    3. Javani, N. & Dincer, I. & Naterer, G.F., 2012. "Thermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles," Energy, Elsevier, vol. 46(1), pages 109-116.
    4. Hang, Yin & Qu, Ming & Zhao, Fu, 2011. "Economical and environmental assessment of an optimized solar cooling system for a medium-sized benchmark office building in Los Angeles, California," Renewable Energy, Elsevier, vol. 36(2), pages 648-658.
    5. Atmaca, Ibrahim & Yigit, Abdulvahap, 2003. "Simulation of solar-powered absorption cooling system," Renewable Energy, Elsevier, vol. 28(8), pages 1277-1293.
    6. Buonomano, Annamaria & Calise, Francesco & Ferruzzi, Gabriele, 2013. "Thermoeconomic analysis of storage systems for solar heating and cooling systems: A comparison between variable-volume and fixed-volume tanks," Energy, Elsevier, vol. 59(C), pages 600-616.
    7. Praene, Jean Philippe & Marc, Olivier & Lucas, Franck & Miranville, Frédéric, 2011. "Simulation and experimental investigation of solar absorption cooling system in Reunion Island," Applied Energy, Elsevier, vol. 88(3), pages 831-839, March.
    8. Gupta, A. & Anand, Y. & Tyagi, S.K. & Anand, S., 2016. "Economic and thermodynamic study of different cooling options: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 164-194.
    9. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.
    10. Elsafty, A & Al-Daini, A.J, 2002. "Economical comparison between a solar-powered vapour absorption air-conditioning system and a vapour compression system in the Middle East," Renewable Energy, Elsevier, vol. 25(4), pages 569-583.
    11. Assilzadeh, F. & Kalogirou, S.A. & Ali, Y. & Sopian, K., 2005. "Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors," Renewable Energy, Elsevier, vol. 30(8), pages 1143-1159.
    12. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    13. Hang, Yin & Du, Lili & Qu, Ming & Peeta, Srinivas, 2013. "Multi-objective optimization of integrated solar absorption cooling and heating systems for medium-sized office buildings," Renewable Energy, Elsevier, vol. 52(C), pages 67-78.
    14. Yuridiana Rocio Galindo-Luna & Efraín Gómez-Arias & Rosenberg J. Romero & Eduardo Venegas-Reyes & Moisés Montiel-González & Helene Emmi Karin Unland-Weiss & Pedro Pacheco-Hernández & Antonio González-, 2018. "Hybrid Solar-Geothermal Energy Absorption Air-Conditioning System Operating with NaOH-H 2 O—Las Tres Vírgenes (Baja California Sur), “La Reforma” Case," Energies, MDPI, vol. 11(5), pages 1-23, May.
    15. Lu, Z.S. & Wang, R.Z. & Xia, Z.Z. & Lu, X.R. & Yang, C.B. & Ma, Y.C. & Ma, G.B., 2013. "Study of a novel solar adsorption cooling system and a solar absorption cooling system with new CPC collectors," Renewable Energy, Elsevier, vol. 50(C), pages 299-306.
    16. Alotaibi, Sorour, 2011. "Energy consumption in Kuwait: Prospects and future approaches," Energy Policy, Elsevier, vol. 39(2), pages 637-643, February.
    17. Afshar, O. & Saidur, R. & Hasanuzzaman, M. & Jameel, M., 2012. "A review of thermodynamics and heat transfer in solar refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5639-5648.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:31:y:2006:i:9:p:1371-1389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.