My bibliography
Save this item
Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
- Zhai, X.Q. & Qu, M. & Li, Yue. & Wang, R.Z., 2011. "A review for research and new design options of solar absorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4416-4423.
- Allouhi, A. & Kousksou, T. & Jamil, A. & Bruel, P. & Mourad, Y. & Zeraouli, Y., 2015. "Solar driven cooling systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 159-181.
- Shekarchian, M. & Moghavvemi, M. & Motasemi, F. & Mahlia, T.M.I., 2011. "Energy savings and cost-benefit analysis of using compression and absorption chillers for air conditioners in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1950-1960, May.
- Drosou, Vassiliki & Kosmopoulos, Panos & Papadopoulos, Agis, 2016. "Solar cooling system using concentrating collectors for office buildings: A case study for Greece," Renewable Energy, Elsevier, vol. 97(C), pages 697-708.
- Cao, Yan & Taslimi, Melika S. & Dastjerdi, Sajad Maleki & Ahmadi, Pouria & Ashjaee, Mehdi, 2022. "Design, dynamic simulation, and optimal size selection of a hybrid solar/wind and battery-based system for off-grid energy supply," Renewable Energy, Elsevier, vol. 187(C), pages 1082-1099.
- Gebreslassie, Berhane H. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Boer, Dieter, 2010. "A systematic tool for the minimization of the life cycle impact of solar assisted absorption cooling systems," Energy, Elsevier, vol. 35(9), pages 3849-3862.
- Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
- Jaruwongwittaya, Tawatchai & Chen, Guangming, 2010. "A review: Renewable energy with absorption chillers in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1437-1444, June.
- Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Xia, Z.Z., 2016. "Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures," Applied Energy, Elsevier, vol. 169(C), pages 846-856.
- Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.
- Sim, Lik Fang, 2014. "Numerical modelling of a solar thermal cooling system under arid weather conditions," Renewable Energy, Elsevier, vol. 67(C), pages 186-191.
- Hang, Yin & Du, Lili & Qu, Ming & Peeta, Srinivas, 2013. "Multi-objective optimization of integrated solar absorption cooling and heating systems for medium-sized office buildings," Renewable Energy, Elsevier, vol. 52(C), pages 67-78.
- Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Yin, Baoquan & Wu, Xiaoting, 2018. "Applicability analysis of the solar heating system with parabolic trough solar collectors in different regions of China," Applied Energy, Elsevier, vol. 221(C), pages 100-111.
- Chidambaram, L.A. & Ramana, A.S. & Kamaraj, G. & Velraj, R., 2011. "Review of solar cooling methods and thermal storage options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3220-3228, August.
- Darkwa, J. & Fraser, S. & Chow, D.H.C., 2012. "Theoretical and practical analysis of an integrated solar hot water-powered absorption cooling system," Energy, Elsevier, vol. 39(1), pages 395-402.
- Zhai, X.Q. & Wang, R.Z., 2009. "A review for absorbtion and adsorbtion solar cooling systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1523-1531, August.
- Altun, A.F. & Kilic, M., 2020. "Economic feasibility analysis with the parametric dynamic simulation of a single effect solar absorption cooling system for various climatic regions in Turkey," Renewable Energy, Elsevier, vol. 152(C), pages 75-93.
- Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
- Alahmer, Ali & Wang, Xiaolin & Al-Rbaihat, Raed & Amanul Alam, K.C. & Saha, B.B., 2016. "Performance evaluation of a solar adsorption chiller under different climatic conditions," Applied Energy, Elsevier, vol. 175(C), pages 293-304.
- Arabkoohsar, A. & Andresen, G.B., 2018. "A smart combination of a solar assisted absorption chiller and a power productive gas expansion unit for cogeneration of power and cooling," Renewable Energy, Elsevier, vol. 115(C), pages 489-500.
- Buonomano, Annamaria & Calise, Francesco & Ferruzzi, Gabriele, 2013. "Thermoeconomic analysis of storage systems for solar heating and cooling systems: A comparison between variable-volume and fixed-volume tanks," Energy, Elsevier, vol. 59(C), pages 600-616.
- Najjaran, Ahmad & Freeman, James & Ramos, Alba & Markides, Christos N., 2019. "Experimental investigation of an ammonia-water-hydrogen diffusion absorption refrigerator," Applied Energy, Elsevier, vol. 256(C).
- Edwin, M. & Sekhar, S. Joseph, 2015. "Thermal performance of milk chilling units in remote villages working with the combination of biomass, biogas and solar energies," Energy, Elsevier, vol. 91(C), pages 842-851.
- Wang, R.Z. & Zhai, X.Q., 2010. "Development of solar thermal technologies in China," Energy, Elsevier, vol. 35(11), pages 4407-4416.
- Mateus, Tiago & Oliveira, Armando C., 2009. "Energy and economic analysis of an integrated solar absorption cooling and heating system in different building types and climates," Applied Energy, Elsevier, vol. 86(6), pages 949-957, June.
- V. Mittal & N.S. Thakur, 2007. "Design and Development of Utilization Factor for Solar Absorption Cooling System," Energy & Environment, , vol. 18(6), pages 761-782, November.
- Boopathi Raja, V. & Shanmugam, V., 2012. "A review and new approach to minimize the cost of solar assisted absorption cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6725-6731.
- Tierney, M.J., 2007. "Options for solar-assisted refrigeration—Trough collectors and double-effect chillers," Renewable Energy, Elsevier, vol. 32(2), pages 183-199.
- Wang, Shengnan & Li, Yunhua & Li, Yun-Ze & Peng, Xing & Mao, Yufeng, 2018. "Exergy based parametric analysis of a cooling and power co-generation system for the life support system of extravehicular spacesuits," Renewable Energy, Elsevier, vol. 115(C), pages 1209-1219.
- Siddique, Muhammad Zeeshan & Badar, Abdul Waheed & Siddiqui, M. Salman & Butt, Fahad Sarfraz & Saleem, Muhammad & Mahmood, Khalid & Fazal, Imran, 2022. "Performance analysis of double effect solar absorption cooling system with different schemes of hot/cold auxiliary integration and parallel-serial arrangement of solar field," Energy, Elsevier, vol. 245(C).
- Praene, Jean Philippe & Marc, Olivier & Lucas, Franck & Miranville, Frédéric, 2011. "Simulation and experimental investigation of solar absorption cooling system in Reunion Island," Applied Energy, Elsevier, vol. 88(3), pages 831-839, March.
- Calise, F. & Palombo, A. & Vanoli, L., 2010. "Maximization of primary energy savings of solar heating and cooling systems by transient simulations and computer design of experiments," Applied Energy, Elsevier, vol. 87(2), pages 524-540, February.
- Calise, Francesco & Dentice d'Accadia, Massimo & Palombo, Adolfo & Vanoli, Laura, 2013. "Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors," Energy, Elsevier, vol. 61(C), pages 72-86.
- Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
- Shekarchian, M. & Moghavvemi, M. & Motasemi, F. & Zarifi, F. & Mahlia, T.M.I., 2012. "Energy and fuel consumption forecast by retrofitting absorption cooling in Malaysia from 2012 to 2025," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6128-6141.
- Yong-Joon Jun & Young-Hak Song & Dae-Young Kim & Kyung-Soon Park, 2017. "Analysis of the Optimum Solar Collector Installation Angle from the Viewpoint of Energy Use Patterns," Energies, MDPI, vol. 10(11), pages 1-18, November.
- Chen, Guansheng & Liu, Chongchong & Li, Nanshuo & Li, Feng, 2017. "A study on heat absorbing and vapor generating characteristics of H2O/LiBr mixture in an evacuated tube," Applied Energy, Elsevier, vol. 185(P1), pages 294-299.
- Yan, Chengchu & Wang, Shengwei & Ma, Zhenjun & Shi, Wenxing, 2015. "A simplified method for optimal design of solar water heating systems based on life-cycle energy analysis," Renewable Energy, Elsevier, vol. 74(C), pages 271-278.
- Yunlong Ma & Suvash C. Saha & Wendy Miller & Lisa Guan, 2017. "Comparison of Different Solar-Assisted Air Conditioning Systems for Australian Office Buildings," Energies, MDPI, vol. 10(10), pages 1-27, September.
- Calise, Francesco & Ferruzzi, Gabriele & Vanoli, Laura, 2012. "Transient simulation of polygeneration systems based on PEM fuel cells and solar heating and cooling technologies," Energy, Elsevier, vol. 41(1), pages 18-30.
- Gupta, A. & Anand, Y. & Tyagi, S.K. & Anand, S., 2016. "Economic and thermodynamic study of different cooling options: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 164-194.
- Xu, Z.Y. & Wang, R.Z., 2017. "Simulation of solar cooling system based on variable effect LiBr-water absorption chiller," Renewable Energy, Elsevier, vol. 113(C), pages 907-914.
- Shirazi, Ali & Taylor, Robert A. & White, Stephen D. & Morrison, Graham L., 2016. "Transient simulation and parametric study of solar-assisted heating and cooling absorption systems: An energetic, economic and environmental (3E) assessment," Renewable Energy, Elsevier, vol. 86(C), pages 955-971.
- Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
- Meyer, A.J. & Harms, T.M. & Dobson, R.T., 2009. "Steam jet ejector cooling powered by waste or solar heat," Renewable Energy, Elsevier, vol. 34(1), pages 297-306.
- Fan, Y. & Luo, L. & Souyri, B., 2007. "Review of solar sorption refrigeration technologies: Development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1758-1775, October.
- Leonzio, Grazia, 2017. "Solar systems integrated with absorption heat pumps and thermal energy storages: state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 492-505.
- Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.
- Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.