IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v29y2004i5p743-752.html
   My bibliography  Save this article

Investigation on generated power of thermoelectric roof solar collector

Author

Listed:
  • Maneewan, S.
  • Khedari, J.
  • Zeghmati, B.
  • Hirunlabh, J.
  • Eakburanawat, J.

Abstract

The aim of this paper was to conduct lab-scale investigation of a new roof design concept termed “the thermoelectric roof solar collector (TE-RSC)” for power generation using solar energy. The TE-RSC was composed of a transparent acrylic sheet, air gap, a copper plate, thermoelectric modules and a rectangular fin heat sink. The incident solar radiation heats up the copper plate so that a temperature difference is created between the TE module that generates a direct current. This current generated was used to run a fan for cooling the TE modules. The TE-RSC surface area was 0.0525 m2 and 10 thermoelectric cooling modules (Tianjin Lantian model TEC1-12708) were used. Investigations were done by varying solar radiation, simulated by using a halogen lamp, between 400 and 1000 W/m2.

Suggested Citation

  • Maneewan, S. & Khedari, J. & Zeghmati, B. & Hirunlabh, J. & Eakburanawat, J., 2004. "Investigation on generated power of thermoelectric roof solar collector," Renewable Energy, Elsevier, vol. 29(5), pages 743-752.
  • Handle: RePEc:eee:renene:v:29:y:2004:i:5:p:743-752
    DOI: 10.1016/j.renene.2003.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103003112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2003.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khedari, J. & Hirunlabh, J. & Bunnag, T., 1996. "Expertmental study of a Roof Solar Collector towards the natural ventilation of new habitations," Renewable Energy, Elsevier, vol. 8(1), pages 335-338.
    2. Rowe, D.M., 1999. "Thermoelectrics, an environmentally-friendly source of electrical power," Renewable Energy, Elsevier, vol. 16(1), pages 1251-1256.
    3. Khedari, J. & Waewsak, J. & Thepa, S. & Hirunlabh, J., 2000. "Field investigation of night radiation cooling under tropical climate," Renewable Energy, Elsevier, vol. 20(2), pages 183-193.
    4. Littlefair, Paul, 1998. "Passive solar urban design : ensuring the penetration of solar energy into the city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(3), pages 303-326, September.
    5. Dai, Y.J. & Wang, R.Z. & Ni, L., 2003. "Experimental investigation on a thermoelectric refrigerator driven by solar cells," Renewable Energy, Elsevier, vol. 28(6), pages 949-959.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Dan & Zhou, Yixin & Liu, Jing, 2011. "Liquid metal based thermoelectric generation system for waste heat recovery," Renewable Energy, Elsevier, vol. 36(12), pages 3530-3536.
    2. Xi, Hongxia & Luo, Lingai & Fraisse, Gilles, 2007. "Development and applications of solar-based thermoelectric technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 923-936, June.
    3. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeb, K. & Ali, S.M. & Khan, B. & Mehmood, C.A. & Tareen, N. & Din, W. & Farid, U. & Haider, A., 2017. "A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1142-1155.
    2. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    3. Tso, C.Y. & Chan, K.C. & Chao, Christopher Y.H., 2017. "A field investigation of passive radiative cooling under Hong Kong’s climate," Renewable Energy, Elsevier, vol. 106(C), pages 52-61.
    4. Man, Yi & Yang, Hongxing & Spitler, Jeffrey D. & Fang, Zhaohong, 2011. "Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings," Applied Energy, Elsevier, vol. 88(11), pages 4160-4171.
    5. Ding, L.C. & Akbarzadeh, A. & Date, Abhijit, 2016. "Electric power generation via plate type power generation unit from solar pond using thermoelectric cells," Applied Energy, Elsevier, vol. 183(C), pages 61-76.
    6. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    7. Gou, Xiaolong & Ping, Huifeng & Ou, Qiang & Xiao, Heng & Qing, Shaowei, 2015. "A novel thermoelectric generation system with thermal switch," Applied Energy, Elsevier, vol. 160(C), pages 843-852.
    8. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    9. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    10. Shidong Wang & Xing Wang & Mingqiang Mao & Yongtao Wang & Shiping Liu & Baoming Luo & Tao Li, 2023. "The Influence of Storage Tank Volume on the Nighttime Heat Dissipation and Freezing Process of All-Glass Vacuum Tube Solar Water Heaters," Energies, MDPI, vol. 16(12), pages 1-24, June.
    11. Abdul-Wahab, Sabah A. & Elkamel, Ali & Al-Damkhi, Ali M. & Al-Habsi, Is'haq A. & Al-Rubai'ey', Hilal S. & Al-Battashi, Abdulaziz K. & Al-Tamimi, Ali R. & Al-Mamari, Khamis H. & Chutani, Muhammad U., 2009. "Design and experimental investigation of portable solar thermoelectric refrigerator," Renewable Energy, Elsevier, vol. 34(1), pages 30-34.
    12. Deepak, K. & Varma, V.B. & Prasanna, G. & Ramanujan, R.V., 2019. "Hybrid thermomagnetic oscillator for cooling and direct waste heat conversion to electricity," Applied Energy, Elsevier, vol. 233, pages 312-320.
    13. Liang, Ruobing & Zhou, Chao & Zhang, Jili & Chen, Jianquan & Riaz, Ahmad, 2020. "Characteristics analysis of the photovoltaic thermal heat pump system on refrigeration mode: An experimental investigation," Renewable Energy, Elsevier, vol. 146(C), pages 2450-2461.
    14. Jaebin Lim & Myounggu Kang, 2022. "The relationship between site planning and electricity consumption: An empirical analysis of multi-unit residential complexes in Seoul, Korea," Environment and Planning B, , vol. 49(3), pages 971-986, March.
    15. Qiu, K. & Hayden, A.C.S., 2012. "Integrated thermoelectric and organic Rankine cycles for micro-CHP systems," Applied Energy, Elsevier, vol. 97(C), pages 667-672.
    16. Kishore, Ravi Anant & Priya, Shashank, 2018. "A review on design and performance of thermomagnetic devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 33-44.
    17. Ran Guo & Hong Leng & Qing Yuan & Shiyi Song, 2022. "Impact of Urban Form on CO 2 Emissions under Different Socioeconomic Factors: Evidence from 132 Small and Medium-Sized Cities in China," Land, MDPI, vol. 11(5), pages 1-20, May.
    18. Rachana Vidhi, 2018. "A Review of Underground Soil and Night Sky as Passive Heat Sink: Design Configurations and Models," Energies, MDPI, vol. 11(11), pages 1-24, October.
    19. Ren, Xiu-Hong & Wang, Lei & Liu, Run-Zhe & Wang, Lin & Zhao, Fu-Yun, 2021. "Thermal stack airflows inside the solar chimney with discrete heat sources: Reversal flow regime defined by chimney inclination and thermal Rayleigh number," Renewable Energy, Elsevier, vol. 163(C), pages 342-356.
    20. Karalis, George & Tzounis, Lazaros & Mytafides, Christos K. & Tsirka, Kyriaki & Formanek, Petr & Stylianakis, Minas & Kymakis, Emmanuel & Paipetis, Alkiviadis S., 2021. "A high performance flexible and robust printed thermoelectric generator based on hybridized Te nanowires with PEDOT:PSS," Applied Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:29:y:2004:i:5:p:743-752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.