IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v29y2004i5p743-752.html
   My bibliography  Save this article

Investigation on generated power of thermoelectric roof solar collector

Author

Listed:
  • Maneewan, S.
  • Khedari, J.
  • Zeghmati, B.
  • Hirunlabh, J.
  • Eakburanawat, J.

Abstract

The aim of this paper was to conduct lab-scale investigation of a new roof design concept termed “the thermoelectric roof solar collector (TE-RSC)” for power generation using solar energy. The TE-RSC was composed of a transparent acrylic sheet, air gap, a copper plate, thermoelectric modules and a rectangular fin heat sink. The incident solar radiation heats up the copper plate so that a temperature difference is created between the TE module that generates a direct current. This current generated was used to run a fan for cooling the TE modules. The TE-RSC surface area was 0.0525 m2 and 10 thermoelectric cooling modules (Tianjin Lantian model TEC1-12708) were used. Investigations were done by varying solar radiation, simulated by using a halogen lamp, between 400 and 1000 W/m2.

Suggested Citation

  • Maneewan, S. & Khedari, J. & Zeghmati, B. & Hirunlabh, J. & Eakburanawat, J., 2004. "Investigation on generated power of thermoelectric roof solar collector," Renewable Energy, Elsevier, vol. 29(5), pages 743-752.
  • Handle: RePEc:eee:renene:v:29:y:2004:i:5:p:743-752
    DOI: 10.1016/j.renene.2003.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103003112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2003.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khedari, J. & Waewsak, J. & Thepa, S. & Hirunlabh, J., 2000. "Field investigation of night radiation cooling under tropical climate," Renewable Energy, Elsevier, vol. 20(2), pages 183-193.
    2. Littlefair, Paul, 1998. "Passive solar urban design : ensuring the penetration of solar energy into the city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(3), pages 303-326, September.
    3. Dai, Y.J. & Wang, R.Z. & Ni, L., 2003. "Experimental investigation on a thermoelectric refrigerator driven by solar cells," Renewable Energy, Elsevier, vol. 28(6), pages 949-959.
    4. Khedari, J. & Hirunlabh, J. & Bunnag, T., 1996. "Expertmental study of a Roof Solar Collector towards the natural ventilation of new habitations," Renewable Energy, Elsevier, vol. 8(1), pages 335-338.
    5. Rowe, D.M., 1999. "Thermoelectrics, an environmentally-friendly source of electrical power," Renewable Energy, Elsevier, vol. 16(1), pages 1251-1256.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dai, Dan & Zhou, Yixin & Liu, Jing, 2011. "Liquid metal based thermoelectric generation system for waste heat recovery," Renewable Energy, Elsevier, vol. 36(12), pages 3530-3536.
    2. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    3. Xi, Hongxia & Luo, Lingai & Fraisse, Gilles, 2007. "Development and applications of solar-based thermoelectric technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 923-936, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeb, K. & Ali, S.M. & Khan, B. & Mehmood, C.A. & Tareen, N. & Din, W. & Farid, U. & Haider, A., 2017. "A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1142-1155.
    2. Kossyvakis, D.N. & Vossou, C.G. & Provatidis, C.G. & Hristoforou, E.V., 2015. "Computational and experimental analysis of a commercially available Seebeck module," Renewable Energy, Elsevier, vol. 74(C), pages 1-10.
    3. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    4. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    5. Zakariya M. Dalala & Osama Saadeh & Mathhar Bdour & Zaka Ullah Zahid, 2018. "A New Maximum Power Point Tracking (MPPT) Algorithm for Thermoelectric Generators with Reduced Voltage Sensors Count Control †," Energies, MDPI, vol. 11(7), pages 1-16, July.
    6. Tso, C.Y. & Chan, K.C. & Chao, Christopher Y.H., 2017. "A field investigation of passive radiative cooling under Hong Kong’s climate," Renewable Energy, Elsevier, vol. 106(C), pages 52-61.
    7. Man, Yi & Yang, Hongxing & Spitler, Jeffrey D. & Fang, Zhaohong, 2011. "Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings," Applied Energy, Elsevier, vol. 88(11), pages 4160-4171.
    8. Ding, L.C. & Akbarzadeh, A. & Date, Abhijit, 2016. "Electric power generation via plate type power generation unit from solar pond using thermoelectric cells," Applied Energy, Elsevier, vol. 183(C), pages 61-76.
    9. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    10. Shi, Zijie & Zhang, Kai & Jiang, Kaiyu & Li, Haoran & Ye, Peiliang & Yang, Haibin & Mahian, Omid, 2023. "Maximizing energy generation: A study of radiative cooling-based thermoelectric power devices," Energy, Elsevier, vol. 274(C).
    11. Ming, Tingzhen & de_Richter, Renaud & Liu, Wei & Caillol, Sylvain, 2014. "Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 792-834.
    12. Liao, Tianjun & He, Qijiao & Xu, Qidong & Dai, Yawen & Cheng, Chun & Ni, Meng, 2021. "Coupling properties and parametric optimization of a photovoltaic panel driven thermoelectric refrigerators system," Energy, Elsevier, vol. 220(C).
    13. Gou, Xiaolong & Ping, Huifeng & Ou, Qiang & Xiao, Heng & Qing, Shaowei, 2015. "A novel thermoelectric generation system with thermal switch," Applied Energy, Elsevier, vol. 160(C), pages 843-852.
    14. Yang, Bo & Wu, Shaocong & Li, Qiang & Yan, Yingjie & Li, Danyang & Luo, Enbo & Zeng, Chunyuan & Chen, Yijun & Guo, Zhengxun & Shu, Hongchun & Li, Zilin & Wang, Jingbo, 2023. "Jellyfish search algorithm based optimal thermoelectric generation array reconfiguration under non-uniform temperature distribution condition," Renewable Energy, Elsevier, vol. 204(C), pages 197-217.
    15. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    16. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    17. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    18. Zhang, Kai & Zhao, Dongliang & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2018. "Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA," Applied Energy, Elsevier, vol. 224(C), pages 371-381.
    19. Elena Garcia-Nevado & Anna Pages-Ramon & Helena Coch, 2016. "Solar Access Assessment in Dense Urban Environments: The Effect of Intersections in an Urban Canyon," Energies, MDPI, vol. 9(10), pages 1-12, October.
    20. Zheng, X.F. & Liu, C.X. & Yan, Y.Y. & Wang, Q., 2014. "A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 486-503.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:29:y:2004:i:5:p:743-752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.