IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4781-d1173723.html
   My bibliography  Save this article

The Influence of Storage Tank Volume on the Nighttime Heat Dissipation and Freezing Process of All-Glass Vacuum Tube Solar Water Heaters

Author

Listed:
  • Shidong Wang

    (Gansu Institute of Architectural Design and Research Co., Ltd., Lanzhou 730000, China)

  • Xing Wang

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China)

  • Mingqiang Mao

    (Gansu Institute of Architectural Design and Research Co., Ltd., Lanzhou 730000, China)

  • Yongtao Wang

    (Gansu Institute of Architectural Design and Research Co., Ltd., Lanzhou 730000, China)

  • Shiping Liu

    (Gansu Institute of Architectural Design and Research Co., Ltd., Lanzhou 730000, China)

  • Baoming Luo

    (Gansu Institute of Architectural Design and Research Co., Ltd., Lanzhou 730000, China)

  • Tao Li

    (School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China)

Abstract

The issue of freezing often occurs when using all-glass vacuum tube solar water heaters during cold winter seasons, leading to problems such as pipe ruptures and tank leakage. In order to further study the nocturnal heat dissipation and freezing characteristics of these heaters, a three-dimensional transient numerical model of their nocturnal heat dissipation was established. The model simulated the nocturnal heat dissipation process, and experimental validations were conducted through nocturnal temperature drops of the collector and temperature drops of individual tubes without a storage tank. Experimental and simulation results revealed that in clear weather conditions during cold winters in Luoyang, the all-glass vacuum tube solar water heaters experienced freezing issues during the night, with freezing predominantly starting from the bottom surface of the vacuum tubes. The frozen length along the tube wall and the thickness of ice at the bottom section reached up to 1180 mm and 5 mm, respectively. In the absence of a storage tank, the freezing situation was severe, with approximately 4/5 of the individual tubes completely frozen. Under specified operating conditions, different storage tank volumes exhibited varying degrees of freezing in the all-glass vacuum tube solar water heaters. When the volume was increased to 15 L, the temperature drop in the storage tank and the vacuum tubes decreased by 12.1% and 7.6%, respectively. Larger storage tank volumes resulted in reduced freezing risks in all-glass vacuum tube solar collectors. This study provides valuable guidance for the design and application of solar collectors and serves as a reference for the development and application of solar energy utilization technologies.

Suggested Citation

  • Shidong Wang & Xing Wang & Mingqiang Mao & Yongtao Wang & Shiping Liu & Baoming Luo & Tao Li, 2023. "The Influence of Storage Tank Volume on the Nighttime Heat Dissipation and Freezing Process of All-Glass Vacuum Tube Solar Water Heaters," Energies, MDPI, vol. 16(12), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4781-:d:1173723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4781/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4781/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan, Yu & Wu, Gang & Yang, Qichang & Cheng, Ruifeng & Tong, Yuxin & Zhang, Yi & Fang, Hui & Ma, Qianlei, 2021. "Experimental and analytical optical-thermal performance of evacuated cylindrical tube receiver for solar dish collector," Energy, Elsevier, vol. 234(C).
    2. Wang, Teng-yue & Zhao, Yao-hua & Diao, Yan-hua & Ren, Ru-yang & Wang, Ze-yu, 2019. "Performance of a new type of solar air collector with transparent-vacuum glass tube based on micro-heat pipe arrays," Energy, Elsevier, vol. 177(C), pages 16-28.
    3. Chen, Fei & Liu, Yang, 2022. "Model construction and performance investigation of multi-section compound parabolic concentrator with solar vacuum tube," Energy, Elsevier, vol. 250(C).
    4. Dimitris Al. Katsaprakakis & Georgios Zidianakis, 2019. "Optimized Dimensioning and Operation Automation for a Solar-Combi System for Indoor Space Heating. A Case Study for a School Building in Crete," Energies, MDPI, vol. 12(1), pages 1-21, January.
    5. Barone, Giovanni & Buonomano, Annamaria & Chang, Roma & Forzano, Cesare & Giuzio, Giovanni Francesco & Mondol, Jayanta & Palombo, Adolfo & Pugsley, Adrian & Smyth, Mervyn & Zacharopoulos, Aggelos, 2022. "Modelling and simulation of building integrated Concentrating Photovoltaic/Thermal Glazing (CoPVTG) systems: Comprehensive energy and economic analysis," Renewable Energy, Elsevier, vol. 193(C), pages 1121-1131.
    6. Dimitris Al. Katsaprakakis, 2020. "Computational Simulation and Dimensioning of Solar-Combi Systems for Large-Size Sports Facilities: A Case Study for the Pancretan Stadium, Crete, Greece," Energies, MDPI, vol. 13(9), pages 1-30, May.
    7. Philip, Nadiya & Duraipandi, Sruthi & Sreekumar, A., 2022. "Techno-economic analysis of greenhouse solar dryer for drying agricultural produce," Renewable Energy, Elsevier, vol. 199(C), pages 613-627.
    8. Khedari, J. & Waewsak, J. & Thepa, S. & Hirunlabh, J., 2000. "Field investigation of night radiation cooling under tropical climate," Renewable Energy, Elsevier, vol. 20(2), pages 183-193.
    9. Li, Qiong & Huang, Xiaoqiao & Tai, Yonghang & Gao, Wenfeng & Wenxian, L. & Liu, Wuming, 2021. "Thermal stratification in a solar hot water storage tank with mantle heat exchanger," Renewable Energy, Elsevier, vol. 173(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramalingam Venkatesaperumal & Kutbudeen Syed Jafar & Perumal Venkatesan Elumalai & Mohamed Abbas & Erdem Cuce & Saboor Shaik & Chanduveetil Ahamed Saleel, 2022. "Heat Transfer Studies on Solar Parabolic trough Collector Using Corrugated Tube Receiver with Conical Strip Inserts," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    2. Dimitris A. Katsaprakakis & Nikos Papadakis & Efi Giannopoulou & Yiannis Yiannakoudakis & George Zidianakis & Michalis Kalogerakis & George Katzagiannakis & Eirini Dakanali & George M. Stavrakakis & A, 2023. "Rational Use of Energy in Sports Centres to Achieve Net Zero: The SAVE Project (Part A)," Energies, MDPI, vol. 16(10), pages 1-41, May.
    3. Amelia DIACONU & Maria-Loredana POPESCU & Sorin BURLACU & Ovidiu Cristian Andrei BUZOIANU, 2019. "Strategic Options For The Development Of Renewable Energy In The Context Of Globalization," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 13(1), pages 1022-1029, November.
    4. Zhang, Xueyan & Gao, Teng & Liu, Yang & Chen, Fei, 2023. "Construction and concentrating performance of a critically truncated compound parabolic concentrator without light escape," Energy, Elsevier, vol. 269(C).
    5. Krzysztof Nowak & Sławomir Rabczak, 2020. "Technical and Economic Analysis of the External Surface Heating System on the Example of a Car Park," Energies, MDPI, vol. 13(24), pages 1-15, December.
    6. Tso, C.Y. & Chan, K.C. & Chao, Christopher Y.H., 2017. "A field investigation of passive radiative cooling under Hong Kong’s climate," Renewable Energy, Elsevier, vol. 106(C), pages 52-61.
    7. Man, Yi & Yang, Hongxing & Spitler, Jeffrey D. & Fang, Zhaohong, 2011. "Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings," Applied Energy, Elsevier, vol. 88(11), pages 4160-4171.
    8. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    9. Ndukwu, Macmanus Chinenye & Akpan, Godwin & Okeahialam, Azubuike N. & Umoh, John D. & Ubuoh, Emmanuel A. & Benjamine, Uchechukwu G. & Nwachukwu, Chris & Kalu, Confidence A. & Mbanasor, Jude & Wu, Hong, 2023. "A comparison of the drying kinetics, energy consumption and colour quality of drying medicinal leaves in direct-solar dryer with different colours of collector cover," Renewable Energy, Elsevier, vol. 216(C).
    10. Ming, Tingzhen & de_Richter, Renaud & Liu, Wei & Caillol, Sylvain, 2014. "Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 792-834.
    11. Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
    12. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Joong Yong Yi & Kyung Min Kim & Jongjun Lee & Mun Sei Oh, 2019. "Exergy Analysis for Utilizing Latent Energy of Thermal Energy Storage System in District Heating," Energies, MDPI, vol. 12(7), pages 1-13, April.
    14. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    15. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    16. Piyatida Trinuruk & Papangkorn Jenyongsak & Somchai Wongwises, 2022. "Comparative Study of Inlet Structure and Obstacle Plate Designs Affecting the Temperature Stratification Characteristics," Energies, MDPI, vol. 15(6), pages 1-25, March.
    17. Zhang, Kai & Zhao, Dongliang & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2018. "Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA," Applied Energy, Elsevier, vol. 224(C), pages 371-381.
    18. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Zhu, T.T. & Wang, T.Y. & Liang, L., 2021. "Numerical evaluation of the thermal performance of different types of double glazing flat-plate solar air collectors," Energy, Elsevier, vol. 233(C).
    19. Maneewan, S. & Khedari, J. & Zeghmati, B. & Hirunlabh, J. & Eakburanawat, J., 2004. "Investigation on generated power of thermoelectric roof solar collector," Renewable Energy, Elsevier, vol. 29(5), pages 743-752.
    20. Edwidge Raissa Mache Kengne & Alain Soup Tewa Kammogne & Thomas Tatietse Tamo & Ahmad Taher Azar & Ahmed Redha Mahlous & Saim Ahmed, 2023. "Photovoltaic Systems Based on Average Current Mode Control: Dynamical Analysis and Chaos Suppression by Using a Non-Adaptive Feedback Outer Loop Controller," Sustainability, MDPI, vol. 15(10), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4781-:d:1173723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.