IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i1p30-34.html
   My bibliography  Save this article

Design and experimental investigation of portable solar thermoelectric refrigerator

Author

Listed:
  • Abdul-Wahab, Sabah A.
  • Elkamel, Ali
  • Al-Damkhi, Ali M.
  • Al-Habsi, Is'haq A.
  • Al-Rubai'ey', Hilal S.
  • Al-Battashi, Abdulaziz K.
  • Al-Tamimi, Ali R.
  • Al-Mamari, Khamis H.
  • Chutani, Muhammad U.

Abstract

The main objective of this study is to design and build an affordable solar thermoelectric refrigerator for the Bedouin people (e.g. deserts) living in remote parts of Oman where electricity is still not available. The refrigerator could be used to store perishable items and facilitate the transportation of medications as well as biological material that must be stored at low temperatures to maintain effectiveness. The design of the solar-powered refrigerator is based on the principles of a thermoelectric module (i.e., Peltier effect) to create a hot side and a cold side. The cold side of the thermoelectric module is utilized for refrigeration purposes; provide cooling to the refrigerator space. On the other hand, the heat from the hot side of the module is rejected to ambient surroundings by using heat sinks and fans. The designed solar thermoelectric refrigerator was experimentally tested for the cooling purpose. The results indicated that the temperature of the refrigeration was reduced from 27°C to 5°C in approximately 44min. The coefficient of performance of the refrigerator (COPR) was calculated and found to be about 0.16.

Suggested Citation

  • Abdul-Wahab, Sabah A. & Elkamel, Ali & Al-Damkhi, Ali M. & Al-Habsi, Is'haq A. & Al-Rubai'ey', Hilal S. & Al-Battashi, Abdulaziz K. & Al-Tamimi, Ali R. & Al-Mamari, Khamis H. & Chutani, Muhammad U., 2009. "Design and experimental investigation of portable solar thermoelectric refrigerator," Renewable Energy, Elsevier, vol. 34(1), pages 30-34.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:1:p:30-34
    DOI: 10.1016/j.renene.2008.04.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810800147X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.04.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xi, Hongxia & Luo, Lingai & Fraisse, Gilles, 2007. "Development and applications of solar-based thermoelectric technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 923-936, June.
    2. Dai, Y.J. & Wang, R.Z. & Ni, L., 2003. "Experimental investigation on a thermoelectric refrigerator driven by solar cells," Renewable Energy, Elsevier, vol. 28(6), pages 949-959.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benday, Naman S. & Dryden, Daniel M. & Kornbluth, Kurt & Stroeve, Pieter, 2017. "A temperature-variant method for performance modeling and economic analysis of thermoelectric generators: Linking material properties to real-world conditions," Applied Energy, Elsevier, vol. 190(C), pages 764-771.
    2. Cai, Yang & Wang, Wei-Wei & Liu, Cheng-Wei & Ding, Wen-Tao & Liu, Di & Zhao, Fu-Yun, 2020. "Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations," Renewable Energy, Elsevier, vol. 147(P1), pages 1565-1583.
    3. Hamid Elsheikh, Mohamed & Shnawah, Dhafer Abdulameer & Sabri, Mohd Faizul Mohd & Said, Suhana Binti Mohd & Haji Hassan, Masjuki & Ali Bashir, Mohamed Bashir & Mohamad, Mahazani, 2014. "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 337-355.
    4. Huang, Yuewu & Zhao, Yonggang, 2023. "Performance assessment of a perovskite solar cell-driven thermionic refrigerator hybrid system," Energy, Elsevier, vol. 266(C).
    5. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    6. Zeb, K. & Ali, S.M. & Khan, B. & Mehmood, C.A. & Tareen, N. & Din, W. & Farid, U. & Haider, A., 2017. "A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1142-1155.
    7. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    8. Irshad, Kashif & Habib, Khairul & Basrawi, Firdaus & Saha, Bidyut Baran, 2017. "Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate," Energy, Elsevier, vol. 119(C), pages 504-522.
    9. Lee, Dongkeon & Park, Hwanjoo & Park, Gimin & Kim, Jiyong & Kim, Hoon & Cho, Hanki & Han, Seungwoo & Kim, Woochul, 2019. "Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device," Energy, Elsevier, vol. 188(C).
    10. Zhao, Dongliang & Tan, Gang, 2014. "Experimental evaluation of a prototype thermoelectric system integrated with PCM (phase change material) for space cooling," Energy, Elsevier, vol. 68(C), pages 658-666.
    11. Afshar, O. & Saidur, R. & Hasanuzzaman, M. & Jameel, M., 2012. "A review of thermodynamics and heat transfer in solar refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5639-5648.
    12. Sahin, A.Z. & Yilbas, B.S. & Shuja, S.Z. & Momin, O., 2011. "Investigation into topping cycle: Thermal efficiency with and without presence of thermoelectric generator," Energy, Elsevier, vol. 36(7), pages 4048-4054.
    13. Rui Miao & Xiaoou Hu & Yao Yu & Qifeng Zhang & Zhibin Lin & Abdulaziz Banawi & Ahmed Cherif Megri, 2021. "Experimental Study to Analyze Feasibility of a Novel Panelized Ground-Source Thermoelectric System for Building Space Heating and Cooling," Energies, MDPI, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    2. He, Wei & Zhou, Jinzhi & Hou, Jingxin & Chen, Chi & Ji, Jie, 2013. "Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar," Applied Energy, Elsevier, vol. 107(C), pages 89-97.
    3. Zeb, K. & Ali, S.M. & Khan, B. & Mehmood, C.A. & Tareen, N. & Din, W. & Farid, U. & Haider, A., 2017. "A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1142-1155.
    4. Hamid Elsheikh, Mohamed & Shnawah, Dhafer Abdulameer & Sabri, Mohd Faizul Mohd & Said, Suhana Binti Mohd & Haji Hassan, Masjuki & Ali Bashir, Mohamed Bashir & Mohamad, Mahazani, 2014. "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 337-355.
    5. Romero Gómez, J. & Ferreiro Garcia, R. & De Miguel Catoira, A. & Romero Gómez, M., 2013. "Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 74-82.
    6. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    7. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 217(C), pages 314-327.
    8. Reif, John H. & Alhalabi, Wadee, 2015. "Solar-thermal powered desalination: Its significant challenges and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 152-165.
    9. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).
    10. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    11. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Integrated TEG-TEC and variable coolant flow rate controller for temperature control and energy harvesting," Energy, Elsevier, vol. 159(C), pages 448-456.
    12. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    13. Cai, Yang & Wang, Wei-Wei & Liu, Cheng-Wei & Ding, Wen-Tao & Liu, Di & Zhao, Fu-Yun, 2020. "Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations," Renewable Energy, Elsevier, vol. 147(P1), pages 1565-1583.
    14. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Bidirectional operation of the thermoelectric device for active temperature control of fuel cells," Applied Energy, Elsevier, vol. 222(C), pages 410-422.
    15. Hooshmand Zaferani, Sadeq & Ghomashchi, Reza & Vashaee, Daryoosh, 2019. "Strategies for engineering phonon transport in Heusler thermoelectric compounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 158-169.
    16. Lee, Dongkeon & Park, Hwanjoo & Park, Gimin & Kim, Jiyong & Kim, Hoon & Cho, Hanki & Han, Seungwoo & Kim, Woochul, 2019. "Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device," Energy, Elsevier, vol. 188(C).
    17. Liu, Huicong & Fu, Hailing & Sun, Lining & Lee, Chengkuo & Yeatman, Eric M., 2021. "Hybrid energy harvesting technology: From materials, structural design, system integration to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Siddique, Abu Raihan Mohammad & Mahmud, Shohel & Heyst, Bill Van, 2017. "A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 730-744.
    19. Li, Baode & Long, Rui & Liu, Zhichun & Liu, Wei, 2016. "Performance analysis of a thermally regenerative electrochemical refrigerator," Energy, Elsevier, vol. 112(C), pages 43-51.
    20. Xi, Hongxia & Luo, Lingai & Fraisse, Gilles, 2007. "Development and applications of solar-based thermoelectric technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 923-936, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:1:p:30-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.