IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs0960148124018184.html
   My bibliography  Save this article

Hydrogen production from energetic poplar and waste sludge by electrohydrogenesis using membraneless microbial electrolysis cells

Author

Listed:
  • Goren, A. Yagmur
  • Kilicaslan, A. Faruk
  • Dincer, Ibrahim
  • Khalvati, Ali

Abstract

Membraneless microbial electrolysis cells (MECs) are potentially considered to produce biohydrogen (bioH2) in a green manner and simultaneously minimize agricultural and wastewater facility wastes. However, effective, sustainable, and cost-effective system configuration and improvement of operating variables, working at ambient conditions, are needed to make the MEC a sustainable process. Therefore, this study investigates the bioH2 production from poplar leaves and anaerobic sludge mixture by incorporating nanomaterials comprising Al2O3, MgO, and Fe2O3 metal oxides at various dosages. Moreover, the effects of applied cell voltage (0.5–1.5 V) and inoculum amount (20–40 mL) on bioH2 production and organic matter removal performance are evaluated. The maximum bioH2 production value is 417 mL at an applied voltage of 1.5 V with a chemical oxygen demand (COD) removal efficiency of 37.6 % under operating times of 5 min using 40 ml of inoculum. The bioH2 production of the MEC system is reduced with the decrease in inoculum amount. The highest bioH2 production of 828 mL is obtained at improved conditions in the presence of 1 g of Fe2O3 metal oxide. Overall, this study provides the potentiality of simultaneous waste minimization and bioH2 production under ambient conditions that highlight the waste-to-energy pathway for membraneless and green bioelectrochemical process.

Suggested Citation

  • Goren, A. Yagmur & Kilicaslan, A. Faruk & Dincer, Ibrahim & Khalvati, Ali, 2024. "Hydrogen production from energetic poplar and waste sludge by electrohydrogenesis using membraneless microbial electrolysis cells," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124018184
    DOI: 10.1016/j.renene.2024.121750
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124018184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viar, Nerea & Requies, Jesús M. & Agirre, Ion & Iriondo, Aitziber & Arias, Pedro L., 2019. "Furanic biofuels production from biomass using Cu-based heterogeneous catalysts," Energy, Elsevier, vol. 172(C), pages 531-544.
    2. Spyridon Achinas & Gerrit Jan Willem Euverink, 2019. "Effect of Combined Inoculation on Biogas Production from Hardly Degradable Material," Energies, MDPI, vol. 12(2), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mourad, M. & Mahmoud, K., 2019. "Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends," Renewable Energy, Elsevier, vol. 143(C), pages 762-771.
    2. Pooja Dange & Soumya Pandit & Dipak Jadhav & Poojhaa Shanmugam & Piyush Kumar Gupta & Sanjay Kumar & Manu Kumar & Yung-Hun Yang & Shashi Kant Bhatia, 2021. "Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    3. Marta Dudek & Kacper Świechowski & Piotr Manczarski & Jacek A. Koziel & Andrzej Białowiec, 2019. "The Effect of Biochar Addition on the Biogas Production Kinetics from the Anaerobic Digestion of Brewers’ Spent Grain," Energies, MDPI, vol. 12(8), pages 1-22, April.
    4. Khuthadzo Mudzanani & Esta van Heerden & Ryneth Mbhele & Michael O. Daramola, 2021. "Enhancement of Biogas Production via Co-Digestion of Wastewater Treatment Sewage Sludge and Brewery Spent Grain: Physicochemical Characterization and Microbial Community," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    5. Fei Wang & Mengfu Pei & Ling Qiu & Yiqing Yao & Congguang Zhang & Hong Qiang, 2019. "Performance of Anaerobic Digestion of Chicken Manure Under Gradually Elevated Organic Loading Rates," IJERPH, MDPI, vol. 16(12), pages 1-17, June.
    6. Spyridon Achinas & Johan Horjus & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "A PESTLE Analysis of Biofuels Energy Industry in Europe," Sustainability, MDPI, vol. 11(21), pages 1-24, October.
    7. Yang Mo Gu & Seon Young Park & Ji Yeon Park & Byoung-In Sang & Byoung Seong Jeon & Hyunook Kim & Jin Hyung Lee, 2021. "Impact of Attrition Ball-Mill on Characteristics and Biochemical Methane Potential of Food Waste," Energies, MDPI, vol. 14(8), pages 1-10, April.
    8. Viar, Nerea & Requies, Jesus M. & Agirre, Ion & Iriondo, Aitziber & García-Sancho, Cristina & Arias, Pedro L., 2022. "HMF hydrogenolysis over carbon-supported Ni–Cu catalysts to produce hydrogenated biofuels," Energy, Elsevier, vol. 255(C).
    9. Spyridon Achinas & Gerrit Jan Willem Euverink, 2019. "Feasibility Study of Biogas Production from Hardly Degradable Material in Co-Inoculated Bioreactor," Energies, MDPI, vol. 12(6), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124018184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.