IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v129y2017icp185-200.html
   My bibliography  Save this article

Numerical simulation of pressure pulsation and transient flow field in an axial flow fan

Author

Listed:
  • Ye, Xuemin
  • Ding, Xueliang
  • Zhang, Jiankun
  • Li, Chunxi

Abstract

An abnormal regulation of the stagger angle deteriorates the internal flow field and pressure pulsation, leading to an augmentation of aero-acoustic noise and vibrations in variable-pitch axial fans. To evaluate the effects of an abnormal stagger angle, the pressure pulsation and transient flow field under normal and abnormal regulations of the stagger angle were simulated using unsteady 3D modelling. The characterization capabilities of the approximate entropy and sample entropy for identifying an abnormal deviation were examined by extracting the features from the static pressure signals. The results indicate that, after an abnormal deviation of stagger angle, the periodic and quasi-periodic pulsation distributions of the static pressure are distinctly hindered, and the impacts of an abnormal deviation angle on the pressure distributions in the time and frequency domains are intensified with increasing deviation degree, resulting in increased pressure fluctuation intensity. The transient flow field clearly changes with time and degree of deviation, and abnormal high- and low-pressure regions are developed. Both the approximate entropy and sample entropy can be used to identify an abnormal blade deviation, but the sample entropy is more suitable for characterizing the effects of deviation degree on the static pressure at the impeller and guide vane outlets.

Suggested Citation

  • Ye, Xuemin & Ding, Xueliang & Zhang, Jiankun & Li, Chunxi, 2017. "Numerical simulation of pressure pulsation and transient flow field in an axial flow fan," Energy, Elsevier, vol. 129(C), pages 185-200.
  • Handle: RePEc:eee:energy:v:129:y:2017:i:c:p:185-200
    DOI: 10.1016/j.energy.2017.04.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217306424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chunxi & Lin, Qing & Ding, Xueliang & Ye, Xuemin, 2016. "Performance, aeroacoustics and feature extraction of an axial flow fan with abnormal blade angle," Energy, Elsevier, vol. 103(C), pages 322-339.
    2. Ye, Xuemin & Li, Pengmin & Li, Chunxi & Ding, Xueliang, 2015. "Numerical investigation of blade tip grooving effect on performance and dynamics of an axial flow fan," Energy, Elsevier, vol. 82(C), pages 556-569.
    3. Ghasemian, Masoud & Nejat, Amir, 2015. "Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy," Energy, Elsevier, vol. 88(C), pages 711-717.
    4. Zurek, Sebastian & Guzik, Przemyslaw & Pawlak, Sebastian & Kosmider, Marcin & Piskorski, Jaroslaw, 2012. "On the relation between correlation dimension, approximate entropy and sample entropy parameters, and a fast algorithm for their calculation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6601-6610.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Lei & He, Ruiyang & Wang, Xin & Zhang, Qian & Wang, Songling, 2019. "Study on static and dynamic characteristics of an axial fan with abnormal blade under rotating stall conditions," Energy, Elsevier, vol. 170(C), pages 305-325.
    2. Wang, Youhao & Sun, Lihui & Guo, Chang & He, Suoying & Gao, Ming & Xu, Qinghua & Zhang, Qiang, 2023. "Vibration characteristics and strength analysis of two-stage variable-pitch axial-flow fan based on fluid-solid coupling method," Energy, Elsevier, vol. 284(C).
    3. Lei Zhang & Liang Zhang & Qian Zhang & Kuan Jiang & Yuan Tie & Songling Wang, 2018. "Effects of the Second-Stage of Rotor with Single Abnormal Blade Angle on Rotating Stall of a Two-Stage Variable Pitch Axial Fan," Energies, MDPI, vol. 11(12), pages 1-18, November.
    4. Liu, Xue & Liu, Jian & Wang, Dong & Zhao, Long, 2021. "Experimental and numerical simulation investigations of an axial flow fan performance in high-altitude environments," Energy, Elsevier, vol. 234(C).
    5. Ye, Xuemin & Zheng, Nan & Hu, Jiami & Li, Chunxi & Xue, Zhanpu, 2022. "Numerical investigation of the benefits of serrated Gurney flaps on an axial flow fan," Energy, Elsevier, vol. 252(C).
    6. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    7. Chengshuo Wu & Jun Yang & Shuai Yang & Peng Wu & Bin Huang & Dazhuan Wu, 2023. "A Review of Fluid-Induced Excitations in Centrifugal Pumps," Mathematics, MDPI, vol. 11(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuemin Ye & Fuwei Fan & Ruixing Zhang & Chunxi Li, 2019. "Prediction of Performance of a Variable-Pitch Axial Fan with Forward-Skewed Blades," Energies, MDPI, vol. 12(12), pages 1-20, June.
    2. Ye, Xuemin & Zhang, Jiankun & Li, Chunxi, 2017. "Effect of blade tip pattern on performance of a twin-stage variable-pitch axial fan," Energy, Elsevier, vol. 126(C), pages 535-563.
    3. Ye, Xuemin & Zheng, Nan & Hu, Jiami & Li, Chunxi & Xue, Zhanpu, 2022. "Numerical investigation of the benefits of serrated Gurney flaps on an axial flow fan," Energy, Elsevier, vol. 252(C).
    4. Liu, Xue & Liu, Jian & Wang, Dong & Zhao, Long, 2021. "Experimental and numerical simulation investigations of an axial flow fan performance in high-altitude environments," Energy, Elsevier, vol. 234(C).
    5. Baocheng Zhou & Shaochun Ma & Weiqing Li & Wenzhi Li & Cong Peng, 2023. "Study on the Influence Mechanism of Energy Consumption of Sugarcane Harvester Extractor by Fluid Simulation and Experiment," Agriculture, MDPI, vol. 13(9), pages 1-20, August.
    6. Zhang, Lei & He, Ruiyang & Wang, Xin & Zhang, Qian & Wang, Songling, 2019. "Study on static and dynamic characteristics of an axial fan with abnormal blade under rotating stall conditions," Energy, Elsevier, vol. 170(C), pages 305-325.
    7. Yonggang Gou & Xiuzhi Shi & Jian Zhou & Xianyang Qiu & Xin Chen, 2017. "Characterization and Effects of the Shock Losses in a Parallel Fan Station in the Underground Mine," Energies, MDPI, vol. 10(6), pages 1-20, June.
    8. Wang, Youhao & Sun, Lihui & Guo, Chang & He, Suoying & Gao, Ming & Xu, Qinghua & Zhang, Qiang, 2023. "Vibration characteristics and strength analysis of two-stage variable-pitch axial-flow fan based on fluid-solid coupling method," Energy, Elsevier, vol. 284(C).
    9. Su, Jie & Lei, Hang & Zhou, Dai & Han, Zhaolong & Bao, Yan & Zhu, Hongbo & Zhou, Lei, 2019. "Aerodynamic noise assessment for a vertical axis wind turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 141(C), pages 559-569.
    10. Restrepo, Juan F. & Schlotthauer, Gastón & Torres, María E., 2014. "Maximum approximate entropy and r threshold: A new approach for regularity changes detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 97-109.
    11. Lei Zhang & Liang Zhang & Qian Zhang & Kuan Jiang & Yuan Tie & Songling Wang, 2018. "Effects of the Second-Stage of Rotor with Single Abnormal Blade Angle on Rotating Stall of a Two-Stage Variable Pitch Axial Fan," Energies, MDPI, vol. 11(12), pages 1-18, November.
    12. Xiao, Gang & Jia, Ming & Wang, Tianyou, 2016. "Large eddy simulation of n-heptane spray combustion in partially premixed combustion regime with linear eddy model," Energy, Elsevier, vol. 97(C), pages 20-35.
    13. Vaidheeswaran, Avinash & Rowan, Steven, 2021. "Chaos and recurrence analyses of pressure signals from bubbling fluidized beds," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    14. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    15. Keisar, David & Arava, Idan & Greenblatt, David, 2024. "Dynamic-stall-driven vertical axis wind turbine: An experimental parametric study," Applied Energy, Elsevier, vol. 365(C).
    16. Zhang, Sanxia & Luo, Kun & Yuan, Renyu & Wang, Qiang & Wang, Jianwen & Zhang, Liru & Fan, Jianren, 2018. "Influences of operating parameters on the aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Energy, Elsevier, vol. 160(C), pages 597-611.
    17. Ziqian Xu & Xiaomin Liu & Yang Liu & Wanxiang Qin & Guang Xi, 2022. "Flow Control Mechanism of Blade Tip Bionic Grooves and Their Influence on Aerodynamic Performance and Noise of Multi-Blade Centrifugal Fan," Energies, MDPI, vol. 15(9), pages 1-20, May.
    18. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    19. Peng, H.Y. & Lam, H.F., 2016. "Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations," Energy, Elsevier, vol. 109(C), pages 557-568.
    20. Han, Yadong & Liu, Yabin & Tan, Lei, 2022. "Method of variable-depth groove on vortex and cavitation suppression for a NACA0009 hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 199(C), pages 546-559.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:129:y:2017:i:c:p:185-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.