Non-parametric models for joint probabilistic distributions of wind speed and direction data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2018.04.026
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Oliveira, M. & Crujeiras, R.M. & Rodríguez-Casal, A., 2012. "A plug-in rule for bandwidth selection in circular density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3898-3908.
- Carta, José A. & Velázquez, Sergio, 2011. "A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion site," Energy, Elsevier, vol. 36(5), pages 2671-2685.
- Oliveira, María & Crujeiras, Rosa M. & Rodríguez-Casal, Alberto, 2014. "NPCirc: An R Package for Nonparametric Circular Methods," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i09).
- Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
- Li, Gong & Shi, Jing, 2010. "Application of Bayesian model averaging in modeling long-term wind speed distributions," Renewable Energy, Elsevier, vol. 35(6), pages 1192-1202.
- Liu, Jinfu & Ren, Guorui & Wan, Jie & Guo, Yufeng & Yu, Daren, 2016. "Variogram time-series analysis of wind speed," Renewable Energy, Elsevier, vol. 99(C), pages 483-491.
- Casella, Livio, 2015. "Performance analysis of the first method for long-term turbulence intensity estimation at potential wind energy sites," Renewable Energy, Elsevier, vol. 74(C), pages 106-115.
- Shin, Ju-Young & Ouarda, Taha B.M.J. & Lee, Taesam, 2016. "Heterogeneous mixture distributions for modeling wind speed, application to the UAE," Renewable Energy, Elsevier, vol. 91(C), pages 40-52.
- Sun, Can & Bie, Zhaohong & Xie, Min & Jiang, Jiangfeng, 2016. "Fuzzy copula model for wind speed correlation and its application in wind curtailment evaluation," Renewable Energy, Elsevier, vol. 93(C), pages 68-76.
- Zhang, Jie & Chowdhury, Souma & Messac, Achille & Castillo, Luciano, 2013. "A Multivariate and Multimodal Wind Distribution model," Renewable Energy, Elsevier, vol. 51(C), pages 436-447.
- Soukissian, Takvor H. & Karathanasi, Flora E., 2017. "On the selection of bivariate parametric models for wind data," Applied Energy, Elsevier, vol. 188(C), pages 280-304.
- Wang, Jianzhou & Hu, Jianming & Ma, Kailiang, 2016. "Wind speed probability distribution estimation and wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 881-899.
- Hu, Qinghua & Wang, Yun & Xie, Zongxia & Zhu, Pengfei & Yu, Daren, 2016. "On estimating uncertainty of wind energy with mixture of distributions," Energy, Elsevier, vol. 112(C), pages 935-962.
- Petrović, Vlaho & Bottasso, Carlo L., 2017. "Wind turbine envelope protection control over the full wind speed range," Renewable Energy, Elsevier, vol. 111(C), pages 836-848.
- Soukissian, Takvor, 2013. "Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution," Applied Energy, Elsevier, vol. 111(C), pages 982-1000.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- García, Irene & Huo, Stella & Prado, Raquel & Bravo, Lelys, 2020. "Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements," Renewable Energy, Elsevier, vol. 161(C), pages 55-64.
- Lidong Zhang & Qikai Li & Yuanjun Guo & Zhile Yang & Lei Zhang, 2018. "An Investigation of Wind Direction and Speed in a Featured Wind Farm Using Joint Probability Distribution Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
- Lei Zhang & Lun Xie & Qinkai Han & Zhiliang Wang & Chen Huang, 2020. "Probability Density Forecasting of Wind Speed Based on Quantile Regression and Kernel Density Estimation," Energies, MDPI, vol. 13(22), pages 1-24, November.
- Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Jung, Christopher & Schindler, Dirk, 2019. "Wind speed distribution selection – A review of recent development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Zhu, Jianyun & Chen, Li, 2023. "A probabilistic multi-objective design method of sail-photovoltaic-hybrid power system for an unmanned ocean surveillance trimaran," Applied Energy, Elsevier, vol. 350(C).
- Jha, Amit Prakash & Mahajan, Aarushi & Singh, Sanjay Kumar & Kumar, Piyush, 2022. "Renewable energy proliferation for sustainable development: Role of cross-border electricity trade," Renewable Energy, Elsevier, vol. 201(P1), pages 1189-1199.
- Mohammad Arashi & Priyanka Nagar & Andriette Bekker, 2020. "Joint Probabilistic Modeling of Wind Speed and Wind Direction for Wind Energy Analysis: A Case Study in Humansdorp and Noupoort," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
- Han, Qinkai & Ma, Sai & Wang, Tianyang & Chu, Fulei, 2019. "Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Han, Qinkai & Chu, Fulei, 2021. "Directional wind energy assessment of China based on nonparametric copula models," Renewable Energy, Elsevier, vol. 164(C), pages 1334-1349.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jung, Christopher & Schindler, Dirk, 2019. "Wind speed distribution selection – A review of recent development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Soukissian, Takvor H. & Karathanasi, Flora E., 2017. "On the selection of bivariate parametric models for wind data," Applied Energy, Elsevier, vol. 188(C), pages 280-304.
- Han, Qinkai & Chu, Fulei, 2021. "Directional wind energy assessment of China based on nonparametric copula models," Renewable Energy, Elsevier, vol. 164(C), pages 1334-1349.
- Han, Qinkai & Ma, Sai & Wang, Tianyang & Chu, Fulei, 2019. "Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- Guedes, Kevin S. & de Andrade, Carla F. & Rocha, Paulo A.C. & Mangueira, Rivanilso dos S. & de Moura, Elineudo P., 2020. "Performance analysis of metaheuristic optimization algorithms in estimating the parameters of several wind speed distributions," Applied Energy, Elsevier, vol. 268(C).
- Alrashidi, Musaed & Rahman, Saifur & Pipattanasomporn, Manisa, 2020. "Metaheuristic optimization algorithms to estimate statistical distribution parameters for characterizing wind speeds," Renewable Energy, Elsevier, vol. 149(C), pages 664-681.
- Mazzeo, Domenico & Oliveti, Giuseppe & Labonia, Ester, 2018. "Estimation of wind speed probability density function using a mixture of two truncated normal distributions," Renewable Energy, Elsevier, vol. 115(C), pages 1260-1280.
- Bagci, Kubra & Arslan, Talha & Celik, H. Eray, 2021. "Inverted Kumarswamy distribution for modeling the wind speed data: Lake Van, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Pan, Yue & Qin, Jianjun, 2022. "A novel probabilistic modeling framework for wind speed with highlight of extremes under data discrepancy and uncertainty," Applied Energy, Elsevier, vol. 326(C).
- Kantar, Yeliz Mert & Usta, Ilhan & Arik, Ibrahim & Yenilmez, Ismail, 2018. "Wind speed analysis using the Extended Generalized Lindley Distribution," Renewable Energy, Elsevier, vol. 118(C), pages 1024-1030.
- Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
- Lepore, Antonio & Palumbo, Biagio & Pievatolo, Antonio, 2020. "A Bayesian approach for site-specific wind rose prediction," Renewable Energy, Elsevier, vol. 150(C), pages 691-702.
- Wang, Jianzhou & Hu, Jianming & Ma, Kailiang, 2016. "Wind speed probability distribution estimation and wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 881-899.
- Katikas, Loukas & Dimitriadis, Panayiotis & Koutsoyiannis, Demetris & Kontos, Themistoklis & Kyriakidis, Phaedon, 2021. "A stochastic simulation scheme for the long-term persistence, heavy-tailed and double periodic behavior of observational and reanalysis wind time-series," Applied Energy, Elsevier, vol. 295(C).
- Tosunoğlu, Fatih, 2018. "Accurate estimation of T year extreme wind speeds by considering different model selection criterions and different parameter estimation methods," Energy, Elsevier, vol. 162(C), pages 813-824.
- Jiang, Haiyan & Wang, Jianzhou & Wu, Jie & Geng, Wei, 2017. "Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1199-1217.
- Dong, Zuo & Wang, Xianjia & Zhu, Runzhou & Dong, Xuan & Ai, Xueshan, 2022. "Improving the accuracy of wind speed statistical analysis and wind energy utilization in the Ningxia Autonomous Region, China," Applied Energy, Elsevier, vol. 320(C).
- Ke-Sheng Cheng & Cheng-Yu Ho & Jen-Hsin Teng, 2020. "Wind Characteristics in the Taiwan Strait: A Case Study of the First Offshore Wind Farm in Taiwan," Energies, MDPI, vol. 13(24), pages 1-21, December.
- Mohammad Arashi & Priyanka Nagar & Andriette Bekker, 2020. "Joint Probabilistic Modeling of Wind Speed and Wind Direction for Wind Energy Analysis: A Case Study in Humansdorp and Noupoort," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
- Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
More about this item
Keywords
Non-parametric model; Kernel density estimation; Joint probabilistic distribution; Marginal distribution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:126:y:2018:i:c:p:1032-1042. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.