IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124015271.html
   My bibliography  Save this article

Configuration optimization of a biomass chemical looping gasification (CLG) system combined with CO2 absorption

Author

Listed:
  • Guo, Mengyao
  • Lin, Junjie
  • Yu, Jiahui
  • Wang, Shuai
  • Luo, Kun
  • Fan, Jianren

Abstract

Biomass chemical looping gasification (CLG) combined with CO2 absorption in a dual circulating fluidized bed (DCFB) has emerged as an advanced technology for clean and efficient biomass utilization, yet the reactor design for achieving higher gasification performance and the in-depth understanding of physical-thermal-chemical characteristics is still lacking. This study presents an optimized design aimed at enhancing hydrogen production and carbon reduction in the biomass CLG process with a DCFB reactor by employing the multiphase particle-in-cell (MP-PIC) method integrated with thermochemical sub-models. The proposed reactor is comprehensively compared with the original reactor from the experimental setup in terms of particle mixing, heat transfer, and gasification behaviors. The results indicate that compared to the original setups, the proposed CLG system demonstrates: (i) an improved gas-solid mixing, as evidenced by the particle mixing index rising from 0.23 to 0.34; (ii) an enhanced particle heat transfer coefficient, which boosts heat and mass transfer process; (iii) a 10.11 % increase in H2 concentration alongside a 23.71 % decrease in CO2 concentration; (iv) a particle distribution characterized by higher concentration at the bottom and lower concentration at the top, along with intensified particle back-mixing. The pressure drop inside the combustor is higher than that in the gasifier. A smaller absorbent mean particle diameter and lower-positioned biomass feeding port contribute to the improvement of the CLG performance.

Suggested Citation

  • Guo, Mengyao & Lin, Junjie & Yu, Jiahui & Wang, Shuai & Luo, Kun & Fan, Jianren, 2024. "Configuration optimization of a biomass chemical looping gasification (CLG) system combined with CO2 absorption," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124015271
    DOI: 10.1016/j.renene.2024.121459
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124015271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124015271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.