IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v158y2020icp32-36.html
   My bibliography  Save this article

Experimental study on industrial-scale CFB biomass gasification

Author

Listed:
  • Fan, Xiaoxu
  • Yang, Liguo
  • Jiang, Jianguo

Abstract

In order to reduce the CO2 emission of an existing 600MWe power plant in Hubei Province of China, a 30MWth biomass CFB gasifier was built to co-fire of the product gas in the pulverized coal boiler. Experiments were conducted with rice husks as the fuel. Different operation conditions, temperatures and loads, are investigated for their effects on the compositions, calorific properties, gasification efficiencies, carbon conversions and tar production. It was found that under the different working condition, the temperature curves along the riser height are similar, and temperatures at the bottom are higher than the top temperatures. The combustible components, calorific value and gasification efficiency of gas first increase and then decrease with temperature rise. The maximum calorific value and the maximum gasification efficiency of gas were 5751 kJ/Nm3 and 73.41%, respectively, at 789°Cand 814 °C. The gasification system runs smoothly under different loads, and the best gasification condition occurs at 30 MWth.

Suggested Citation

  • Fan, Xiaoxu & Yang, Liguo & Jiang, Jianguo, 2020. "Experimental study on industrial-scale CFB biomass gasification," Renewable Energy, Elsevier, vol. 158(C), pages 32-36.
  • Handle: RePEc:eee:renene:v:158:y:2020:i:c:p:32-36
    DOI: 10.1016/j.renene.2020.05.145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308508
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sansaniwal, S.K. & Pal, K. & Rosen, M.A. & Tyagi, S.K., 2017. "Recent advances in the development of biomass gasification technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 363-384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Heng & Hao, Zhenhua & Li, Junguo & Yang, Xin & Wang, Zhiqing & Liu, Zheyu & Huang, Jiejie & Zhang, Yongqi & Fang, Yitian, 2021. "Effect of coal ash additive on potassium fixation and melting behaviors of the mixture under simulated biomass gasification condition," Renewable Energy, Elsevier, vol. 168(C), pages 806-814.
    2. Kang, Kang & Klinghoffer, Naomi B. & ElGhamrawy, Islam & Berruti, Franco, 2021. "Thermochemical conversion of agroforestry biomass and solid waste using decentralized and mobile systems for renewable energy and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Integrated Circulating Fluidized Bed Gasification System for Sustainable Municipal Solid Waste Management: Energy Production and Heat Recovery," Energies, MDPI, vol. 16(13), pages 1-23, July.
    4. Wan, Zhanghao & Yang, Shiliang & Hu, Jianhang & Bao, Guirong & Wang, Hua, 2022. "Numerical analysis of wood air gasification in a bubbling fluidized gasifier with reactive charcoal as bed material," Renewable Energy, Elsevier, vol. 188(C), pages 282-298.
    5. Shan Gu & Maosheng Liu & Xiaoye Liang, 2024. "Analysis of Operational Problems and Improvement Measures for Biomass-Circulating Fluidized Bed Gasifiers," Energies, MDPI, vol. 17(2), pages 1-12, January.
    6. Cao, Yan & Bai, Yu & Du, Jiang, 2022. "Co-gasification of rice husk and woody biomass blends in a CFB system: A modeling approach," Renewable Energy, Elsevier, vol. 188(C), pages 849-858.
    7. Chen, Tianju & Zhang, Juan & Wang, Zhiqi & Zhao, Ruidong & He, Jianjiang & Wu, Jinhu & Qin, Jianguang, 2020. "Oxygen-enriched gasification of lignocellulosic biomass: Syngas analysis, physicochemical characteristics of the carbon-rich material and its utilization as an anode in lithium ion battery," Energy, Elsevier, vol. 212(C).
    8. Šuhaj, Patrik & Husár, Jakub & Haydary, Juma & Annus, Július, 2022. "Experimental verification of a pilot pyrolysis/split product gasification (PSPG) unit," Energy, Elsevier, vol. 244(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    2. Zhong, Hanbin & Xiong, Qingang & Yin, Lina & Zhang, Juntao & Zhu, Yuqin & Liang, Shengrong & Niu, Ben & Zhang, Xinyu, 2020. "CFD-based reduced-order modeling of fluidized-bed biomass fast pyrolysis using artificial neural network," Renewable Energy, Elsevier, vol. 152(C), pages 613-626.
    3. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    4. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    5. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    6. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    7. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    8. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    10. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    12. Moritz Wegener & Antonio Isalgué & Anders Malmquist & Andrew Martin, 2019. "3E-Analysis of a Bio-Solar CCHP System for the Andaman Islands, India—A Case Study," Energies, MDPI, vol. 12(6), pages 1-19, March.
    13. Andrius Tamošiūnas & Ajmia Chouchène & Pranas Valatkevičius & Dovilė Gimžauskaitė & Mindaugas Aikas & Rolandas Uscila & Makrem Ghorbel & Mejdi Jeguirim, 2017. "The Potential of Thermal Plasma Gasification of Olive Pomace Charcoal," Energies, MDPI, vol. 10(5), pages 1-14, May.
    14. Bai, Zhang & Gu, Yucheng & Wang, Shuoshuo & Jiang, Tieliu & Kong, Debin & Li, Qi, 2023. "Applying the solar solid particles as heat carrier to enhance the solar-driven biomass gasification with dynamic operation power generation performance analysis," Applied Energy, Elsevier, vol. 351(C).
    15. Shayan, E. & Zare, V. & Mirzaee, I., 2019. "On the use of different gasification agents in a biomass fueled SOFC by integrated gasifier: A comparative exergo-economic evaluation and optimization," Energy, Elsevier, vol. 171(C), pages 1126-1138.
    16. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    18. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    19. Eliseu Monteiro & Sérgio Ferreira, 2023. "Some Perspectives for the Gasification Process in the Energy Transition World Scenario," Energies, MDPI, vol. 16(14), pages 1-11, July.
    20. Bartela, Łukasz & Kotowicz, Janusz & Dubiel-Jurgaś, Klaudia, 2018. "Investment risk for biomass integrated gasification combined heat and power unit with an internal combustion engine and a Stirling engine," Energy, Elsevier, vol. 150(C), pages 601-616.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:158:y:2020:i:c:p:32-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.