IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124015131.html
   My bibliography  Save this article

Long-term operational characteristics of subway source heat pump system under various tunnel internal heat source intensities

Author

Listed:
  • Ji, Yongming
  • Yin, Zhenfeng
  • Jiao, Jiachen
  • Ji, Chengfan
  • Hu, Songtao

Abstract

In recent years, subway systems have effectively alleviated urban traffic congestions. However, thermal pollution of underground spaces is a prevailing problem, which poses a serious threat to the safe and efficient operation of subways. The subway source heat pump system (SSHPS), equipped with a front-end tunnel lining heat exchanger, is an effective solution to tackle the aforementioned problem. However, the design methodology and operational strategy of the system is not yet established, which necessitates an analysis of its long-term operational characteristics. In this study, an SSHPS simulation model was developed using the TRNSYS simulation tool based on a demonstration project and the model was subsequently validated against measured data. The validated model was used to evaluate the long-term performance and operational characteristics of the subway system under various internal heat source intensities ranging from 0 W/m to 240 W/m. The simulation results showed that the tunnel air temperature steadily increased as the internal heat source intensity increased. When the internal heat source was 0 W/m, the average annual decrease in tunnel air temperature was 0.11 °C. However, the average annual tunnel air temperature did not fall below the minimum subway design specification temperature of 5 °C at any point in time. When the internal heat source was 120, 180, and 240 W/m, the tunnel air temperature exceeded the maximum temperature of 40 °C stipulated in subway design guidelines on multiple occasions. As the internal heat source intensity increased, the performance of both the heat pump unit and SSHPS progressively decreased during the cooling season and gradually increased during the heating season. The runtime of the heat pump unit gradually decreased from 92.72 % to 77.57 % during the cooling season, whereas it increased from 46.92 % to 89.41 % during the heating season. The heat pump unit exhibited an average energy efficiency ratio (EER) of 5.07, 4.95, 4.87, 4.80 and 4.76 whereas the SSHPS demonstrated an average EER of 3.04, 3.01, 3.00, 2.99 and 2.98. Throughout its operational years, the SSHPS consistently maintained stable and cyclically high performance. However, the system did not fully meet the specified cooling and heating loads under all operational conditions, indicating that there was a source–load mismatch issue within the system. Hence, it is recommended to incorporate auxiliary cold and heat sources, thereby establishing a composite heating and cooling system based on subway source heat pump technology, with the aim of enhancing the reliability of energy supply for the system. This study can serve as a valuable reference for formulating high-efficiency and energy-saving operational strategies for SSHPSs.

Suggested Citation

  • Ji, Yongming & Yin, Zhenfeng & Jiao, Jiachen & Ji, Chengfan & Hu, Songtao, 2024. "Long-term operational characteristics of subway source heat pump system under various tunnel internal heat source intensities," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015131
    DOI: 10.1016/j.renene.2024.121445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124015131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji, Yongming & Wu, Wenze & Qi, Haoyu & Wang, Wenqiang & Hu, Songtao, 2022. "Heat transfer performance analysis of front-end capillary heat exchanger of a subway source heat pump system," Energy, Elsevier, vol. 246(C).
    2. Wang, Jing & Mao, Jinfeng & Han, Xu & Li, Yong, 2021. "Study on analytical solution model of heat transfer of ground heat exchanger in the protection engineering structure," Renewable Energy, Elsevier, vol. 179(C), pages 998-1008.
    3. Ji, Yongming & Yin, Zhenfeng & Jiao, Jiachen & Hu, Songtao, 2023. "Long-term performance of a subway source heat pump system with two types of front-end heat exchangers," Renewable Energy, Elsevier, vol. 210(C), pages 640-655.
    4. Ogunleye, Oluwaseun & Singh, Rao Martand & Cecinato, Francesco & Chan Choi, Jung, 2020. "Effect of intermittent operation on the thermal efficiency of energy tunnels under varying tunnel air temperature," Renewable Energy, Elsevier, vol. 146(C), pages 2646-2658.
    5. Luo, Mingrui & Yuan, Zuobing & Fan, Lintao & Tao, Liangliang & Zeng, Yanhua & Yuan, Yanping & Zhou, Jiamei, 2024. "Effects of longitudinal ventilation and GHEs on geothermal energy extraction and HRC in high geothermal tunnels," Renewable Energy, Elsevier, vol. 232(C).
    6. Li, Chenglin & Zhang, Guozhu & Xiao, Suguang & Xie, Yongli & Liu, Xiaohua & Cao, Shiding, 2022. "Long-term operation of tunnel-lining ground heat exchangers in tropical zones: Energy, environmental, and economic performance evaluation," Renewable Energy, Elsevier, vol. 196(C), pages 1429-1442.
    7. Li, Chenglin & Zhang, Guozhu & Xiao, Suguang & Shi, Yehui & Xu, Chenghua & Sun, Yinjuan, 2023. "Numerical investigation on thermal performance enhancement mechanism of tunnel lining GHEs using two-phase closed thermosyphons for building cooling," Renewable Energy, Elsevier, vol. 212(C), pages 875-886.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chenglin & Zhang, Guozhu & Xiao, Suguang & Shi, Yehui & Xu, Chenghua & Sun, Yinjuan, 2023. "Numerical investigation on thermal performance enhancement mechanism of tunnel lining GHEs using two-phase closed thermosyphons for building cooling," Renewable Energy, Elsevier, vol. 212(C), pages 875-886.
    2. Li, Chenglin & Zhang, Guozhu & Xiao, Suguang & Xie, Yongli & Liu, Xiaohua & Cao, Shiding, 2022. "Long-term operation of tunnel-lining ground heat exchangers in tropical zones: Energy, environmental, and economic performance evaluation," Renewable Energy, Elsevier, vol. 196(C), pages 1429-1442.
    3. Luo, Mingrui & Yuan, Zuobing & Fan, Lintao & Tao, Liangliang & Zeng, Yanhua & Yuan, Yanping & Zhou, Jiamei, 2024. "Effects of longitudinal ventilation and GHEs on geothermal energy extraction and HRC in high geothermal tunnels," Renewable Energy, Elsevier, vol. 232(C).
    4. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    5. Ji, Yongming & Shen, Shouheng & Wang, Xinru & Zhang, Hui & Qi, Haoyu & Hu, Songtao, 2024. "Impact of groundwater seepage on thermal performance of capillary heat exchangers in subway tunnel lining," Renewable Energy, Elsevier, vol. 227(C).
    6. Tong, Cang & Li, Xiangli & Ju, Hengjin & Duanmu, Lin & Huang, Caifeng, 2024. "A hybrid numerical model for horizontal ground heat exchanger," Renewable Energy, Elsevier, vol. 230(C).
    7. You, Tian & Wu, Wei & Yang, Hongxing & Liu, Jiankun & Li, Xianting, 2021. "Hybrid photovoltaic/thermal and ground source heat pump: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Wang, Jing & Mao, Jinfeng & Han, Xu & Li, Yong, 2021. "Study on analytical solution model of heat transfer of ground heat exchanger in the protection engineering structure," Renewable Energy, Elsevier, vol. 179(C), pages 998-1008.
    9. Ji, Yongming & Wu, Wenze & Hu, Songtao, 2023. "Long-term performance of a front-end capillary heat exchanger for a metro source heat pump system," Applied Energy, Elsevier, vol. 335(C).
    10. Ji, Yongming & Wang, Wenqiang & Fan, Yujing & Hu, Songtao, 2023. "Coupling effect between tunnel lining heat exchanger and subway thermal environment," Renewable Energy, Elsevier, vol. 217(C).
    11. Hongyu Zhang & Fei Gan & Guangqin Huang & Chunlong Zhuang & Xiaodong Shen & Shengbo Li & Lei Cheng & Shanshan Hou & Ningge Xu & Zhenqun Sang, 2022. "Study on Heat Storage Performance of Phase Change Reservoir in Underground Protection Engineering," Energies, MDPI, vol. 15(15), pages 1-31, August.
    12. Insana, A. & Barla, M., 2020. "Experimental and numerical investigations on the energy performance of a thermo-active tunnel," Renewable Energy, Elsevier, vol. 152(C), pages 781-792.
    13. Liu, Jiaxin & Han, Chanjuan, 2023. "Design and optimization of heat extraction section in energy tunnel using simulated annealing algorithm," Renewable Energy, Elsevier, vol. 213(C), pages 218-232.
    14. Dai, Quanwei & Rotta Loria, Alessandro F. & Choo, Jinhyun, 2022. "Effects of internal airflows on the heat exchange potential and mechanics of energy walls," Renewable Energy, Elsevier, vol. 197(C), pages 1069-1080.
    15. Chen, Zhaoxin & Li, Jiaxuan & Tang, Guoqiang & Zhang, Jiahao & Zhang, Donghai & Gao, Penghui, 2024. "High-efficiency heating and cooling technology with embedded pipes in buildings and underground structures: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    16. Ma, Chunjing & Donna, Alice Di & Dias, Daniel & Zhang, Jiamin, 2021. "Numerical investigations of the tunnel environment effect on the performance of energy tunnels," Renewable Energy, Elsevier, vol. 172(C), pages 1279-1292.
    17. Xu, Yishuo & Guo, Yanlong & Wang, Huajun & Wang, Bo & Zhao, Yanting & Shen, Jian, 2023. "Influences of seasonal changes of the ground temperature on the performance of ground heat exchangers embedded in diaphragm walls: A cold climate case from North China," Renewable Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.