IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v213y2023icp218-232.html
   My bibliography  Save this article

Design and optimization of heat extraction section in energy tunnel using simulated annealing algorithm

Author

Listed:
  • Liu, Jiaxin
  • Han, Chanjuan

Abstract

Energy tunnel has attracted increasing interest in preventing tunnel frost damage and providing energy for space conditioning through utilizing geothermal energy from ground source heat pump (GSHP) system. The energy lining system, composed of heat pump units, lining buried with geothermal heat exchangers (GHEs), and supply pipes, is one of the most popular energy tunnel systems. Despite their good potential for geothermal energy exploitation, studies on their design approach are still insufficient, particularly for cold region energy tunnels. In this work, we propose an innovative design framework for optimization of the heat extraction section in the energy tunnel by combing numerical simulation and Simulated Annealing (SA). The numerical model reproduces a horseshoe-shaped tunnel segment equipped with an energy lining system, generating heat power activated by circulating heat carrier fluid. And the simulation provides key input parameters, involving heat extraction power, the ground temperature field, and heating demand, for the algorithm, hence the heat extraction section range is optimized using SA. Influences of four design parameters (i.e., ground temperature, inlet fluid temperature, circulating fluid flowrate, and pipe spacing) and three axial temperature distribution characteristics (i.e., overall temperature along the tunnel axis, airflow characteristics, and temperature difference between the tunnel entrance and exit) dominating temperature profiles along the tunnel axis on the optimal range design are investigated. Major findings include: (1) the optimal range is sensitive to the temperature field along the tunnel axis, and the normalized optimal length decreases by 91.3% with the normalized feasible range increases 1099.6% as the average temperature inside the tunnel rises from −2.5 °C to 5 °C; (2) increasing flowrate and lowering the temperature of the inlet fluid can yield a reduction in the optimal length of up to 29.2% and 64.3% separately; (3) a relatively sparse pipe arrangement can save cost without comprising the optimal length. This study presents a smart and efficient approach for designing the heat extraction section of the energy tunnel, which is promising in more complex conditions and capable of guiding practical applications.

Suggested Citation

  • Liu, Jiaxin & Han, Chanjuan, 2023. "Design and optimization of heat extraction section in energy tunnel using simulated annealing algorithm," Renewable Energy, Elsevier, vol. 213(C), pages 218-232.
  • Handle: RePEc:eee:renene:v:213:y:2023:i:c:p:218-232
    DOI: 10.1016/j.renene.2023.05.135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812300767X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Chulho & Park, Sangwoo & Won, Jongmuk & Jeoung, Jaehyeung & Sohn, Byonghu & Choi, Hangseok, 2012. "Evaluation of thermal performance of energy textile installed in Tunnel," Renewable Energy, Elsevier, vol. 42(C), pages 11-22.
    2. Ogunleye, Oluwaseun & Singh, Rao Martand & Cecinato, Francesco & Chan Choi, Jung, 2020. "Effect of intermittent operation on the thermal efficiency of energy tunnels under varying tunnel air temperature," Renewable Energy, Elsevier, vol. 146(C), pages 2646-2658.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    2. Li, Chenglin & Zhang, Guozhu & Xiao, Suguang & Shi, Yehui & Xu, Chenghua & Sun, Yinjuan, 2023. "Numerical investigation on thermal performance enhancement mechanism of tunnel lining GHEs using two-phase closed thermosyphons for building cooling," Renewable Energy, Elsevier, vol. 212(C), pages 875-886.
    3. Li, Chenglin & Zhang, Guozhu & Xiao, Suguang & Xie, Yongli & Liu, Xiaohua & Cao, Shiding, 2022. "Long-term operation of tunnel-lining ground heat exchangers in tropical zones: Energy, environmental, and economic performance evaluation," Renewable Energy, Elsevier, vol. 196(C), pages 1429-1442.
    4. Luo, Mingrui & Yuan, Zuobing & Fan, Lintao & Tao, Liangliang & Zeng, Yanhua & Yuan, Yanping & Zhou, Jiamei, 2024. "Effects of longitudinal ventilation and GHEs on geothermal energy extraction and HRC in high geothermal tunnels," Renewable Energy, Elsevier, vol. 232(C).
    5. Ji, Yongming & Wang, Wenqiang & Fan, Yujing & Hu, Songtao, 2023. "Coupling effect between tunnel lining heat exchanger and subway thermal environment," Renewable Energy, Elsevier, vol. 217(C).
    6. Ma, Chunjing & Donna, Alice Di & Dias, Daniel & Zhang, Jiamin, 2021. "Numerical investigations of the tunnel environment effect on the performance of energy tunnels," Renewable Energy, Elsevier, vol. 172(C), pages 1279-1292.
    7. Ji, Yongming & Shen, Shouheng & Wang, Xinru & Zhang, Hui & Qi, Haoyu & Hu, Songtao, 2024. "Impact of groundwater seepage on thermal performance of capillary heat exchangers in subway tunnel lining," Renewable Energy, Elsevier, vol. 227(C).
    8. Anis Akrouch, Ghassan & Sánchez, Marcelo & Briaud, Jean-Louis, 2020. "Thermal performance and economic study of an energy piles system under cooling dominated conditions," Renewable Energy, Elsevier, vol. 147(P2), pages 2736-2747.
    9. Geisler, T. & Wolf, M. & Götzl, G. & Burger, U. & Cordes, T. & Voit, K. & Straka, W. & Nyeki, E. & Haslinger, E. & Auer, R. & Lauermann, M. & Pol, O. & Obradovic, M. & Pröll, T. & Marcher, T., 2023. "Optimizing the geothermal potential of tunnel water by separating colder sectional discharges - Case study Brenner Base Tunnel," Renewable Energy, Elsevier, vol. 203(C), pages 529-541.
    10. You, Tian & Wu, Wei & Yang, Hongxing & Liu, Jiankun & Li, Xianting, 2021. "Hybrid photovoltaic/thermal and ground source heat pump: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Wang, Jing & Mao, Jinfeng & Han, Xu & Li, Yong, 2021. "Study on analytical solution model of heat transfer of ground heat exchanger in the protection engineering structure," Renewable Energy, Elsevier, vol. 179(C), pages 998-1008.
    12. Insana, A. & Barla, M., 2020. "Experimental and numerical investigations on the energy performance of a thermo-active tunnel," Renewable Energy, Elsevier, vol. 152(C), pages 781-792.
    13. Dai, Quanwei & Rotta Loria, Alessandro F. & Choo, Jinhyun, 2022. "Effects of internal airflows on the heat exchange potential and mechanics of energy walls," Renewable Energy, Elsevier, vol. 197(C), pages 1069-1080.
    14. Park, Sangwoo & Lee, Seokjae & Sung, Chihun & Choi, Hangseok, 2021. "Applicability evaluation of cast-in-place energy piles based on two-year heating and cooling operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Park, Sangwoo & Lee, Dongseop & Lee, Seokjae & Chauchois, Alexis & Choi, Hangseok, 2017. "Experimental and numerical analysis on thermal performance of large-diameter cast-in-place energy pile constructed in soft ground," Energy, Elsevier, vol. 118(C), pages 297-311.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:213:y:2023:i:c:p:218-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.