IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124014678.html
   My bibliography  Save this article

Research on the characteristics of photovoltaic-driven refrigerated warehouse with ice storage in field under weather and load variation

Author

Listed:
  • Zhao, Hong
  • Li, Ming
  • Wang, Yunfeng
  • Zhang, Ying
  • Li, Guoliang

Abstract

The field photovoltaic refrigerated warehouse works well in pre-cooling and refrigerating fruits and vegetables in remote areas. Thus, it is crucial to ensure its long-term stable operation, particularly under the dual challenges of fluctuating solar energy supply and the unstable energy consumption required for load variation. This paper investigates the operational characteristics of a 1.5-ton photovoltaic-driven refrigerated warehouse with ice storage under varying loads and weather conditions. Results indicate that the average cooling time of the material was 26 h, under the condition of continuous material inflow into the warehouse. Additionally, 26 kg of ice were produced per day per kilowatt of solar panel capacity. Energy requirements of the device for 1.1 nights match its daily ice production. Furthermore, a maximum COP of 0.34 was achieved under photovoltaic drive. The internal temperature of the load was effectively maintained within the range of 3–4 °C, even during consecutive overcast and rainy weather. Based on this, an 8-ton field photovoltaic-driven refrigerated warehouse with ice storage was constructed. These studies provide an effective alternative refrigeration solution for remote regions, addressing their cooling needs efficiently.

Suggested Citation

  • Zhao, Hong & Li, Ming & Wang, Yunfeng & Zhang, Ying & Li, Guoliang, 2024. "Research on the characteristics of photovoltaic-driven refrigerated warehouse with ice storage in field under weather and load variation," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014678
    DOI: 10.1016/j.renene.2024.121399
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Youhua & Li, Ming & Wang, Yunfeng & Li, Guoliang & Ma, Xun & Wang, Rui & Wang, Liang, 2019. "Impedance matching control strategy for a solar cooling system directly driven by distributed photovoltaics," Energy, Elsevier, vol. 168(C), pages 953-965.
    2. Zhou, Xiaoyan & Zhang, Ying & Ma, Xun & Li, Guoliang & Wang, Yunfeng & Hu, Chengzhi & Liang, Junyu & Li, Ming, 2022. "Performance characteristics of photovoltaic cold storage under composite control of maximum power tracking and constant voltage per frequency," Applied Energy, Elsevier, vol. 305(C).
    3. Ding, Zhixiong & Wu, Wei & Chen, Youming & Leung, Michael, 2020. "Dynamic characteristics and performance improvement of a high-efficiency double-effectthermal battery for cooling and heating," Applied Energy, Elsevier, vol. 264(C).
    4. Ren, Haoshan & Sun, Yongjun & Albdoor, Ahmed K. & Tyagi, V.V. & Pandey, A.K. & Ma, Zhenjun, 2021. "Improving energy flexibility of a net-zero energy house using a solar-assisted air conditioning system with thermal energy storage and demand-side management," Applied Energy, Elsevier, vol. 285(C).
    5. Luerssen, Christoph & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2020. "Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications," Applied Energy, Elsevier, vol. 273(C).
    6. Li, Sihui & Peng, Jinqing & Li, Houpei & Zou, Bin & Song, Jiaming & Ma, Tao & Ji, Jie, 2022. "Zero energy potential of PV direct-driven air conditioners coupled with phase change materials and load flexibility," Renewable Energy, Elsevier, vol. 200(C), pages 419-432.
    7. Raut, Rakesh D. & Gardas, Bhaskar B. & Narwane, Vaibhav S. & Narkhede, Balkrishna E., 2019. "Improvement in the food losses in fruits and vegetable supply chain - a perspective of cold third-party logistics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Ding, Zhixiong & Wu, Wei, 2024. "Simulation of a multi-level absorption thermal battery with variable solution flow rate for adjustable cooling capacity," Energy, Elsevier, vol. 301(C).
    3. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    4. Wang, Gang, 2024. "Order assignment and two-stage integrated scheduling in fruit and vegetable supply chains," Omega, Elsevier, vol. 124(C).
    5. Jeong, Jaehui & Jung, Han Sol & Lee, Jae Won & Kang, Yong Tae, 2023. "Hybrid cooling and heating absorption heat pump cycle with thermal energy storage," Energy, Elsevier, vol. 283(C).
    6. Sun, Xiaoqin & Lin, Yian & Zhu, Ziyang & Li, Jie, 2022. "Optimized design of a distributed photovoltaic system in a building with phase change materials," Applied Energy, Elsevier, vol. 306(PA).
    7. Xiong, Chengyan & Meng, Qinglong & Wei, Ying'an & Luo, Huilong & Lei, Yu & Liu, Jiao & Yan, Xiuying, 2023. "A demand response method for an active thermal energy storage air-conditioning system using improved transactive control: On-site experiments," Applied Energy, Elsevier, vol. 339(C).
    8. Min, Haye & Choi, Hyung Won & Jeong, Jaehui & Jeong, Jinhee & Kim, Young & Kang, Yong Tae, 2023. "Daily sorption thermal battery cycle for building applications," Energy, Elsevier, vol. 282(C).
    9. Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).
    10. Ma, Qijie & Wang, Peijun & Fan, Jianhua & Klar, Assaf, 2022. "Underground solar energy storage via energy piles: An experimental study," Applied Energy, Elsevier, vol. 306(PB).
    11. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. V.V. Gedam & R.D. Raut & Ana Beatriz Lopes de Sousa Jabbour & A.N. Tanksale & B.E. Narkhede, 2021. "Circular Economy Practices in a Developing Economy: Barriers to Be Defeated," Post-Print hal-04275963, HAL.
    13. Kumar, Shashank & Raut, Rakesh D. & Agrawal, Nishant & Cheikhrouhou, Naoufel & Sharma, Mahak & Daim, Tugrul, 2022. "Integrated blockchain and internet of things in the food supply chain: Adoption barriers," Technovation, Elsevier, vol. 118(C).
    14. Cédric Vernier & Denis Loeillet & Rallou Thomopoulos & Catherine Macombe, 2021. "Adoption of ICTs in Agri-Food Logistics: Potential and Limitations for Supply Chain Sustainability," Post-Print hal-03280502, HAL.
    15. Gandhi, Oktoviano & Rodríguez-Gallegos, Carlos D. & Zhang, Wenjie & Reindl, Thomas & Srinivasan, Dipti, 2022. "Levelised cost of PV integration for distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    16. Han, Youhua & Liu, Yang & Lu, Shixiang & Basalike, Pie & Zhang, Jili, 2021. "Electrical performance and power prediction of a roll-bond photovoltaic thermal array under dewing and frosting conditions," Energy, Elsevier, vol. 237(C).
    17. Shivanaganna, Nethravathi & Shivamurthy, K.P. & Boddapati, Venkatesh, 2024. "Optimal strategy for transition into nearly zero energy residential buildings: A case study," Energy, Elsevier, vol. 307(C).
    18. Zhang, Jiarui & Mu, Yunfei & Li, Jie & Tong, Yueheng & Yang, Wei, 2024. "Energy performance of a residential zero energy building energy system – R-CELLS at solar decathlon China 2022," Applied Energy, Elsevier, vol. 371(C).
    19. Zhou, Xiaoyan & Zhang, Ying & Ma, Xun & Li, Guoliang & Wang, Yunfeng & Hu, Chengzhi & Liang, Junyu & Li, Ming, 2022. "Performance characteristics of photovoltaic cold storage under composite control of maximum power tracking and constant voltage per frequency," Applied Energy, Elsevier, vol. 305(C).
    20. Samuel Godfrey, 2023. "Redesigning a Solar PV Kiosk in High-Temperature Environments of Burundi, Africa," Sustainability, MDPI, vol. 15(6), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.