IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923018743.html
   My bibliography  Save this article

Optimum pulse electrolysis for efficiency enhancement of hydrogen production by alkaline water electrolyzers

Author

Listed:
  • Cheng, Haoran
  • Xia, Yanghong
  • Hu, Zhiyuan
  • Wei, Wei

Abstract

Alkaline water electrolysis is considered as the most feasible way to realize large-scale hydrogen production from renewable energy sources. However, the poor efficiency performance in low load limits the wide-range operation of alkaline water electrolyzers. The energy loss caused by the parasitic current is the main reason of the poor efficiency in low load. Based on the electrolyzer internal structure, an improved model of alkaline water electrolyzers is proposed and the inefficiency mechanism is illustrated. It is found that by applying pulse current for electrolysis, the efficiency of hydrogen production in low load can be enhanced greatly. The influence of the pulse current magnitude and duty ratio on the efficiency improvement is studied. Under different operation conditions, they can be regulated to achieve the maximum efficiency of hydrogen production. The electrolyzer parameters also affect the efficiency trend, especially the double layer capacitance. Finally, the results are experimentally verified on a 10 kW alkaline water electrolyzer.

Suggested Citation

  • Cheng, Haoran & Xia, Yanghong & Hu, Zhiyuan & Wei, Wei, 2024. "Optimum pulse electrolysis for efficiency enhancement of hydrogen production by alkaline water electrolyzers," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923018743
    DOI: 10.1016/j.apenergy.2023.122510
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923018743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bensmann, B. & Hanke-Rauschenbach, R. & Müller-Syring, G. & Henel, M. & Sundmacher, K., 2016. "Optimal configuration and pressure levels of electrolyzer plants in context of power-to-gas applications," Applied Energy, Elsevier, vol. 167(C), pages 107-124.
    2. Elhadidy, M.A. & Shaahid, S.M., 2004. "Promoting applications of hybrid (wind+photovoltaic+diesel+battery) power systems in hot regions," Renewable Energy, Elsevier, vol. 29(4), pages 517-528.
    3. Wang, Xuejie & Li, Bingkang & Wang, Yuwei & Lu, Hao & Zhao, Huiru & Xue, Wanlei, 2022. "A bargaining game-based profit allocation method for the wind-hydrogen-storage combined system," Applied Energy, Elsevier, vol. 310(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Wenming & Cheng, Yoke Wang & Xu, Dequan & Zhang, Yaning & Wang, Chi-Hwa, 2024. "Reaction synergy of bimetallic catalysts on ZSM-5 support in tailoring plastic pyrolysis for hydrogen and value-added product production," Applied Energy, Elsevier, vol. 372(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    2. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    3. Nicole Meinusch & Susanne Kramer & Oliver Körner & Jürgen Wiese & Ingolf Seick & Anita Beblek & Regine Berges & Bernhard Illenberger & Marco Illenberger & Jennifer Uebbing & Maximilian Wolf & Gunter S, 2021. "Integrated Cycles for Urban Biomass as a Strategy to Promote a CO 2 -Neutral Society—A Feasibility Study," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    4. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    5. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Wilke, Christoph & Bensmann, Astrid & Martin, Stefan & Utz, Annika & Hanke-Rauschenbach, Richard, 2018. "Optimal design of a district energy system including supply for fuel cell electric vehicles," Applied Energy, Elsevier, vol. 226(C), pages 129-144.
    7. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    8. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
    9. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    10. Sharples, Steve & Radhi, Hassan, 2013. "Assessing the technical and economic performance of building integrated photovoltaics and their value to the GCC society," Renewable Energy, Elsevier, vol. 55(C), pages 150-159.
    11. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    12. Perez-Trujillo, Juan Pedro & Elizalde-Blancas, Francisco & Della Pietra, Massimiliano & McPhail, Stephen J., 2018. "A numerical and experimental comparison of a single reversible molten carbonate cell operating in fuel cell mode and electrolysis mode," Applied Energy, Elsevier, vol. 226(C), pages 1037-1055.
    13. Phuangpornpitak, N. & Kumar, S., 2011. "User acceptance of diesel/PV hybrid system in an island community," Renewable Energy, Elsevier, vol. 36(1), pages 125-131.
    14. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    15. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    16. Liu, Pei & Pistikopoulos, Efstratios N. & Li, Zheng, 2010. "An energy systems engineering approach to the optimal design of energy systems in commercial buildings," Energy Policy, Elsevier, vol. 38(8), pages 4224-4231, August.
    17. Genovese, Matteo & Fragiacomo, Petronilla, 2021. "Parametric technical-economic investigation of a pressurized hydrogen electrolyzer unit coupled with a storage compression system," Renewable Energy, Elsevier, vol. 180(C), pages 502-515.
    18. Elsir, Mohamed & Al-Sumaiti, Ameena Saad & El Moursi, Mohamed Shawky & Al-Awami, Ali Taleb, 2023. "Coordinating the day-ahead operation scheduling for demand response and water desalination plants in smart grid," Applied Energy, Elsevier, vol. 335(C).
    19. Tjarks, Geert & Gibelhaus, Andrej & Lanzerath, Franz & Müller, Martin & Bardow, André & Stolten, Detlef, 2018. "Energetically-optimal PEM electrolyzer pressure in power-to-gas plants," Applied Energy, Elsevier, vol. 218(C), pages 192-198.
    20. Zheng, Weiye & Lu, Hao & Zhu, Jizhong, 2023. "Incentivizing cooperative electricity-heat operation: A distributed asymmetric Nash bargaining mechanism," Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923018743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.