IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124016896.html
   My bibliography  Save this article

Unveiling the potential of operating time in improving machine learning models’ performance for waste biomass gasification systems

Author

Listed:
  • Olca, Kadriye Deniz
  • Yücel, Özgün

Abstract

Biomass is a promising renewable energy source, especially regarding local energy production. Gasification is an outstanding thermochemical process for syngas production from biomass. The optimal modeling and control of syngas production from biomass gasification is vital in planning small-scale energy supply. Artificial intelligence methods are widely applied to reveal the nonlinear relations between the gasification parameters and the reaction products. In this study, special attention is paid to the effect of operating time as a predictor on the performances of the models formed, as its introduction provides the phase information to the model which allows the combination of different sequential experimental data. Unlike most preceding studies in which hold-out is preferred, nested cross-validation is utilized for model evaluation emphasizing the unbiased nature of the latter method. Least squares, gaussian kernel, generalized additive models, random forest, and artificial neural networks (ANN) are utilized to model the process's product syngas composition and high heating value (HHV). The significance of operating time on the gasification system is also reflected on the feature importance analysis which is performed. Along with the operating time, temperature is also shown to play a vital role on the hydrogen yield and calorific value of the products.

Suggested Citation

  • Olca, Kadriye Deniz & Yücel, Özgün, 2024. "Unveiling the potential of operating time in improving machine learning models’ performance for waste biomass gasification systems," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016896
    DOI: 10.1016/j.renene.2024.121621
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016896
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Safarian, Sahar & Ebrahimi Saryazdi, Seyed Mohammad & Unnthorsson, Runar & Richter, Christiaan, 2020. "Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant," Energy, Elsevier, vol. 213(C).
    2. Pan, Junting & Shahbeik, Hossein & Shafizadeh, Alireza & Rafiee, Shahin & Golvirdizadeh, Milad & Ghafarian Nia, Seyyed Alireza & Mobli, Hossein & Yang, Yadong & Zhang, Guilong & Tabatabaei, Meisam & A, 2024. "Machine learning optimization for enhanced biomass-coal co-gasification," Renewable Energy, Elsevier, vol. 229(C).
    3. Michael Binns & Hafiz Muhammad Uzair Ayub, 2021. "Model Reduction Applied to Empirical Models for Biomass Gasification in Downdraft Gasifiers," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
    4. Ayub, Yousaf & Hu, Yusha & Ren, Jingzheng, 2023. "Estimation of syngas yield in hydrothermal gasification process by application of artificial intelligence models," Renewable Energy, Elsevier, vol. 215(C).
    5. Mutlu, Ali Yener & Yucel, Ozgun, 2018. "An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification," Energy, Elsevier, vol. 165(PA), pages 895-901.
    6. Shahbaz, Muhammad & Taqvi, Syed A. & Minh Loy, Adrian Chun & Inayat, Abrar & Uddin, Fahim & Bokhari, Awais & Naqvi, Salman Raza, 2019. "Artificial neural network approach for the steam gasification of palm oil waste using bottom ash and CaO," Renewable Energy, Elsevier, vol. 132(C), pages 243-254.
    7. Elmaz, Furkan & Yücel, Özgün & Mutlu, Ali Yener, 2020. "Predictive modeling of biomass gasification with machine learning-based regression methods," Energy, Elsevier, vol. 191(C).
    8. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Zheng Lian & Yixiao Wang & Xiyue Zhang & Abubakar Yusuf & Lord Famiyeh & David Murindababisha & Huan Jin & Yiyang Liu & Jun He & Yunshan Wang & Gang Yang & Yong Sun, 2021. "Hydrogen Production by Fluidized Bed Reactors: A Quantitative Perspective Using the Supervised Machine Learning Approach," J, MDPI, vol. 4(3), pages 1-22, July.
    10. Elmaz, Furkan & Yücel, Özgün, 2020. "Data-driven identification and model predictive control of biomass gasification process for maximum energy production," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santhappan, Joseph Sekhar & Boddu, Muralikrishna & Gopinath, Arun S. & Mathimani, Thangavel, 2024. "Analysis of 27 supervised machine learning models for the co-gasification assessment of peanut shell and spent tea residue in an open-core downdraft gasifier," Renewable Energy, Elsevier, vol. 235(C).
    2. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    3. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Huang, Chengwei & Xu, Jialing & Xu, Shuai & Shan, Murong & Liu, Shanke & Yu, Lijun, 2024. "Optimizing H2 production from biomass: A machine learning-enhanced model of supercritical water gasification dynamics," Energy, Elsevier, vol. 312(C).
    5. Liu, Shanke & Yang, Yan & Yu, Lijun & Cao, Yu & Liu, Xinyi & Yao, Anqi & Cao, Yaping, 2023. "Self-heating optimization of integrated system of supercritical water gasification of biomass for power generation using artificial neural network combined with process simulation," Energy, Elsevier, vol. 272(C).
    6. Kargbo, Hannah O. & Zhang, Jie & Phan, Anh N., 2021. "Optimisation of two-stage biomass gasification for hydrogen production via artificial neural network," Applied Energy, Elsevier, vol. 302(C).
    7. Ayub, Yousaf & Hu, Yusha & Ren, Jingzheng, 2023. "Estimation of syngas yield in hydrothermal gasification process by application of artificial intelligence models," Renewable Energy, Elsevier, vol. 215(C).
    8. Ascher, Simon & Sloan, William & Watson, Ian & You, Siming, 2022. "A comprehensive artificial neural network model for gasification process prediction," Applied Energy, Elsevier, vol. 320(C).
    9. Md Sumon Reza & Zhanar Baktybaevna Iskakova & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Marzhan M. Kubenova & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hrido, 2023. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-39, July.
    10. Zhang, Bowei & Guo, Simao & Jin, Hui, 2022. "Production forecast analysis of BP neural network based on Yimin lignite supercritical water gasification experiment results," Energy, Elsevier, vol. 246(C).
    11. Büyükkanber, Kaan & Haykiri-Acma, Hanzade & Yaman, Serdar, 2023. "Calorific value prediction of coal and its optimization by machine learning based on limited samples in a wide range," Energy, Elsevier, vol. 277(C).
    12. Zhang, Jinchun & Hou, Jinxiu & Zhang, Zichuan, 2022. "Real-time identification of out-of-control and instability in process parameter for gasification process: Integrated application of control chart and kalman filter," Energy, Elsevier, vol. 238(PB).
    13. Manish Meena & Hrishikesh Kumar & Nitin Dutt Chaturvedi & Andrey A. Kovalev & Vadim Bolshev & Dmitriy A. Kovalev & Prakash Kumar Sarangi & Aakash Chawade & Manish Singh Rajput & Vivekanand Vivekanand , 2023. "Biomass Gasification and Applied Intelligent Retrieval in Modeling," Energies, MDPI, vol. 16(18), pages 1-21, September.
    14. Michael Binns & Hafiz Muhammad Uzair Ayub, 2021. "Model Reduction Applied to Empirical Models for Biomass Gasification in Downdraft Gasifiers," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
    15. Yang, Yadong & Shahbeik, Hossein & Shafizadeh, Alireza & Rafiee, Shahin & Hafezi, Amir & Du, Xinyi & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2023. "Predicting municipal solid waste gasification using machine learning: A step toward sustainable regional planning," Energy, Elsevier, vol. 278(PB).
    16. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    17. Mohd Zeeshan & Rohan R. Pande & Purnanand V. Bhale, 2024. "A modeling study for the gasification of refuse-derived fuel as an alternative to waste disposal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 23985-24008, September.
    18. Han, Yongming & Liu, Shuang & Cong, Di & Geng, Zhiqiang & Fan, Jinzhen & Gao, Jingyang & Pan, Tingrui, 2021. "Resource optimization model using novel extreme learning machine with t-distributed stochastic neighbor embedding: Application to complex industrial processes," Energy, Elsevier, vol. 225(C).
    19. Owen Sedej & Eric Mbonimpa & Trevor Sleight & Jeremy Slagley, 2022. "Application of Machine Learning to Predict the Performance of an EMIPG Reactor Using Data from Numerical Simulations," Energies, MDPI, vol. 15(7), pages 1-22, March.
    20. Guo, Shenghui & Meng, Fanrui & Peng, Pai & Xu, Jialing & Jin, Hui & Chen, Yunan & Guo, Liejin, 2022. "Thermodynamic analysis of the superiority of the direct mass transfer design in the supercritical water gasification system," Energy, Elsevier, vol. 244(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.